Derivatives and Logarithms 103

Calculus Level 2

x 2 y 2 = x ln ( y ) \large \frac{x^2}{y^2}=x\ln(y)

Given that d y d x \dfrac{dy}{dx} can be expressed as 1 ( W ( a x ) + 1 ) e W ( a x ) \dfrac{1}{(W(ax)+1)\sqrt{e^{W(ax)}}} , where a a is a positive integer less than 10 10 , find a 2 a^2 .

Notation: W ( ) W(\cdot) denotes the Lambert W Function , also known as the product log, which is the inverse function of x e x xe^x .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given that x 2 y 2 = x ln y \dfrac {x^2}{y^2} = x \ln y ,

x = y 2 ln y = y 2 2 ln y 2 Let u = ln y 2 u e u = 2 x W ( u e u ) = W ( 2 x ) Since W ( a e a ) = a u = W ( 2 x ) ln y 2 = W ( 2 x ) y = e W ( 2 x ) \begin{aligned} \implies x & = y^2 \ln y = \frac {y^2}2 \ln y^2 & \small \blue{\text{Let }u = \ln y^2} \\ \implies u e^u & = 2x \\ W(ue^u) & = W(2x) & \small \blue{\text{Since }W(ae^a) = a} \\ \implies u & = W(2x) \\ \ln y^2 & = W(2x) \\ \implies y & = \sqrt{e^{W(2x)}} \end{aligned}

From x = y 2 ln y x = y^2 \ln y , differentiate both sides with respect to x x :

1 = ( 2 y ln y + y 2 y ) d y d x d y d x = 1 ( ln y 2 + 1 ) y Note that ln y 2 = W ( 2 x ) = 1 ( W ( 2 x ) + 1 ) e W ( 2 x ) \begin{aligned} 1 & = \left(2y \ln y + \frac {y^2}y \right) \frac {dy}{dx} \\ \implies \frac {dy}{dx} & = \frac 1{(\blue{\ln y^2} + 1)y} & \small \blue{\text{Note that }\ln y^2 = W(2x)} \\ & = \frac 1{(W(2x)+1)\sqrt{e^{W(2x)}}} \end{aligned}

Therefore a = 2 a = 2 and a 2 = 4 a^2 = \boxed 4 .

James Watson
Aug 1, 2020

Note: This can be done by rearranging the starting equation first, but I did it without that.

First, we can differentiate both sides using implicit differentiation: d d x ( x 2 y 2 ) = d d x ( x ln ( y ) ) 2 x y 2 2 x 2 y 3 × d y d x = ln ( y ) + x y × d y d x \frac{d}{dx}\left(\frac{x^2}{y^2}\right)=\frac{d}{dx}(x\ln(y)) \Longrightarrow \frac{2x}{y^2} - \frac{2x^2}{y^3}\times \frac{dy}{dx} = \ln(y) + \frac{x}{y}\times \frac{dy}{dx}

Then, we can rearrange to find d y d x \Large \frac{dy}{dx} : 2 x y 2 2 x 2 y 3 × d y d x = ln ( y ) + x y × d y d x 2 x y 2 ln ( y ) = d y d x ( 2 x 2 y 3 + x y ) \frac{2x}{y^2} - \frac{2x^2}{y^3}\times \frac{dy}{dx} = \ln(y) + \frac{x}{y}\times \frac{dy}{dx} \Longrightarrow \frac{2x}{y^2} - \ln(y) = \frac{dy}{dx}\left( \frac{2x^2}{y^3}+ \frac{x}{y}\right) d y d x = 2 x y 2 ln ( y ) 2 x 2 y 3 + x y = 2 x y y 3 ln ( y ) 2 x 2 + x y 2 \Longrightarrow \boxed{\frac{dy}{dx} = \frac{\frac{2x}{y^2} - \ln(y)}{\frac{2x^2}{y^3}+ \frac{x}{y}} = \frac{2xy-y^3\ln(y)}{2x^2+xy^2}}

However, the requirement is to express d y d x \Large \frac{dy}{dx} in terms of x x , not in terms of y y and x x . This means that we need to find out what y y is in terms of x x . We can do this by rearranging the starting equation: x 2 y 2 = x ln ( y ) x = y 2 ln ( y ) x = ln ( y ) e 2 ln ( y ) \frac{x^2}{y^2} = x\ln(y) \Longrightarrow x = y^2\ln(y) \Longrightarrow x = \ln(y)e^{2\ln(y)}

We can almost use the product log now! Once we multiply by 2 2 to make the coefficient and exponent of e e the same, we can use it: x = ln ( y ) e 2 ln ( y ) 2 x = 2 ln ( y ) e 2 ln ( y ) W ( 2 x ) = 2 ln ( y ) y = e W ( 2 x ) 2 = 2 x W ( 2 x ) x = \ln(y)e^{2\ln(y)} \Longrightarrow 2x = \blue{2\ln(y)}e^{\blue{2\ln(y)}} \Longrightarrow W(2x) = \blue{2\ln(y)} \Longrightarrow \boxed{y = e^{\frac{W(2x)}{2}} = \sqrt{\frac{2x}{W(2x)}}}

Finally, we have an expression for y y ! Now, we can plug this into our expression for d y d x \Large \frac{dy}{dx} : 2 x y y 3 ln ( y ) 2 x 2 + x y 2 2 x 2 x W ( 2 x ) 2 x W ( 2 x ) 3 ln ( 2 x W ( 2 x ) ) 2 x 2 + x 2 x W ( 2 x ) 2 = 2 x 2 x W ( 2 x ) 2 x W ( 2 x ) 2 x W ( 2 x ) ln ( 2 x W ( 2 x ) ) 2 x 2 + 2 x 2 W ( 2 x ) = 2 2 x W ( 2 x ) 2 W ( 2 x ) 2 x W ( 2 x ) W ( 2 x ) 2 x + 2 x W ( 2 x ) = 2 x W ( 2 x ) 2 x W ( 2 x ) + 2 x W ( 2 x ) = W ( 2 x ) 2 x W ( 2 x ) 2 x ( W ( 2 x ) + 1 ) = 2 x W ( 2 x ) × W ( 2 x ) 2 x × 1 W ( 2 x ) + 1 \begin{aligned} \frac{2xy-y^3\ln(y)}{2x^2+xy^2} \Longrightarrow \frac{2x\sqrt{\frac{2x}{W(2x)}}-\sqrt{\frac{2x}{W(2x)}}^3\ln(\sqrt{\frac{2x}{W(2x)}})}{2x^2+x\sqrt{\frac{2x}{W(2x)}}^2} &= \frac{2x\sqrt{\frac{2x}{W(2x)}}-\frac{2x}{W(2x)}\sqrt{\frac{2x}{W(2x)}}\ln(\frac{2x}{W(2x)})}{2x^2+\frac{2x^2}{W(2x)}} \\ &= \frac{2\sqrt{\frac{2x}{W(2x)}}-\frac{2}{W(2x)}\sqrt{\frac{2x}{W(2x)}}W(2x)}{2x+\frac{2x}{W(2x)}} \\ &= \frac{\sqrt{\frac{2x}{W(2x)}}}{\frac{2xW(2x)+2x}{W(2x)}} \\ &= \frac{W(2x)\sqrt{\frac{2x}{W(2x)}}}{2x(W(2x)+1)} \\ &= \sqrt{\frac{2x}{W(2x)}}\times \frac{W(2x)}{2x}\times \frac{1}{W(2x)+1} \\ \end{aligned}

This may not be looking much like our needed expression, but look closely and you can see how to alter it:

2 x W ( 2 x ) × W ( 2 x ) 2 x = e W ( 2 x ) 2 × e W ( 2 x ) = e W ( 2 x ) 2 = 1 e W ( 2 x ) \sqrt{\frac{2x}{W(2x)}}\times \frac{W(2x)}{2x} = e^{\frac{W(2x)}{2}}\times e^{-W(2x)} = e^{\frac{-W(2x)}{2}} = \frac{1}{\sqrt{e^{W(2x)}}}

Much better! Plugging this into our expression and we can satisfy the expression above: 2 x W ( 2 x ) × W ( 2 x ) 2 x × 1 ( W ( 2 x ) + 1 ) 1 ( W ( 2 x ) + 1 ) e W ( 2 x ) \sqrt{\frac{2x}{W(2x)}}\times \frac{W(2x)}{2x}\times \frac{1}{(W(2x)+1)} \Longrightarrow \boxed{\frac{1}{(W(\blue{2}x)+1)\sqrt{e^{W(\blue{2}x)}}}}

Perfect. With the expression satisfied, we can see that a = 2 a = 2 and the final answer is a 2 = 2 2 = 4 a^2 = 2^2 = \boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...