Derivatives need practice

Calculus Level 2

Find d d x ( sin 2 x tan 2 x ) \frac { d }{ dx } (\sin { 2x } \tan { 2x } ) when x = π 3 x=\frac { \pi }{ 3 }

5 3 5\sqrt { 3 } 3 3 3\sqrt { 3 } 2 3 2\sqrt { 3 } 4 3 4\sqrt { 3 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Khaled Barie
Jan 9, 2015

d d x ( sin 2 x ) = 2 cos 2 x \frac{d}{dx}(\sin2x) = 2\cos2x

d d x ( tan 2 x ) = 2 sec 2 2 x \frac{d}{dx}( \tan2x) = 2 \sec^2 2x

According to the rule:

if y = f . g y= f.g

then d y d x = f . g + f . g \frac{dy}{dx}=f`.g+f.g`

Therefore:

d d x ( sin 2 x tan 2 x ) = 2 cos 2 x × tan 2 x + sin 2 x × 2 sec 2 2 x \frac { d }{ dx } (\sin { 2x } \tan { 2x } ) = 2\cos2x \times \tan2x + \sin2x \times 2 \sec^2 2x

put x = π 3 = 60 ° x = \frac{\pi}{3} = 60°

2 cos 120 ° × tan 120 ° + sin 120 ° × 2 sec 2 120 ° = 5 3 \ 2\cos120° \times \tan120° + \sin120° \times 2 \sec^2 120° = \boxed{5\sqrt{3}}

Afreen Sheikh
Jan 15, 2015

t a n 2 x = s i n 2 x c o s 2 x tan2x= \frac{sin2x}{cos2x}

hence s i n 2 2 x c o s 2 x \frac{sin^{2}2x}{cos 2x} =

1 c o s 2 2 x c o s 2 x = s e c 2 x c o s 2 x \frac{1-cos^{2}2x }{cos 2x}= sec 2x -cos 2x

differentiate it and get sec2x tan2x + sin2x put the value of x and get the answer

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...