Derivatives, Products and Totatives

Calculus Level 3

Consider a function f : R R f:\mathbb{R}\mapsto \mathbb{R} defined as,

f ( x ) = i = 1 2014 ( ( x i ) ( x i ) ( x + i ) + φ ( 2 ) ) f(x)=\prod_{i=1}^{2014} \left(\frac{(x-i)}{(\sqrt{x}-\sqrt{i})(\sqrt{x}+\sqrt{i})+\varphi(2)}\right)

Compute the value of the following ( if it exists ) (\textbf{if it exists}) :

f ( 2014 ) + 2014 f'\left(\sqrt{2014}\right)+2014


Details and Assumptions: \textbf{Details and Assumptions:}

φ ( x ) \bullet\quad \varphi(x) denotes the Euler's Totient function.

i = a b f ( i ) = f ( a ) f ( a + 1 ) f ( b 1 ) f ( b ) \bullet\quad \displaystyle \prod_{i=a}^b f(i)=f(a)f(a+1)\cdots f(b-1)f(b)

Golden Ratio ( ϕ ) (\phi) Napier's constant ( e ) (e) 2016 Undefined π \pi 2015 1729 2014

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Caleb Townsend
Mar 13, 2015

i = 1 2014 x i ( x i ) ( x + i ) + φ ( 2 ) = i = 1 2014 x i x i + 1 = ( x 1 x ) ( x 2 x 1 ) . . . ( x 2014 x 2013 ) = x 2014 x = 1 2014 x = f ( x ) \prod_{i=1}^{2014}\frac{x - i}{(\sqrt{x} - \sqrt{i})(\sqrt{x} + \sqrt{i}) + \varphi(2)} \\ = \prod_{i=1}^{2014}\frac{x - i}{x - i + 1} \\ = (\frac{x - 1}{x})(\frac{x - 2}{x - 1})... (\frac{x - 2014}{x - 2013}) \\ = \frac{x - 2014}{x} = 1 - \frac{2014}{x} = f(x)

f ( x ) = 2014 x 2 f ( 2014 ) + 2014 = 2014 2014 + 2014 = 2015 f'(x) = \frac{2014}{x^2} \\ f'(\sqrt{2014}) + 2014 = \frac{2014}{2014} + 2014 \\ = \boxed{2015}

Note that f ( x ) = x 2014 x f(x)=\dfrac{x-2014}{x} only for x R { i } i = 0 i = 2013 x\in \mathbb{R}\setminus \{i\}_{i=0}^{i=2013} .

It'd be nice if you mention this little part in your solution to make it complete.

Prasun Biswas - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...