Derived

Calculus Level pending

Let M M be the 2018th derivative of x 2 exp ( x 2 ) x^2\exp{(x^2)} evaluated at x = 0 x=0 . What is the sum of the smallest and largest 4-digit prime factors of M M ?

Note : exp ( x ) = e x \exp{(x)} = e^x is the exponential function .


The answer is 3026.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 25, 2017

By Maclaurin series , we have:

x 2 e x 2 = x 2 ( 1 + x 2 + x 4 2 ! + x 6 3 ! + ) = x 2 + x 4 + x 6 2 ! + x 8 3 ! + d 2 d x 2 x 2 e x 2 = 2 ! + ( 4 3 ) x 2 + ( 6 5 ) x 4 2 ! + ( 8 7 ) x 6 3 ! + d 4 d x 4 x 2 e x 2 = 4 ! 2 ! + ( 6 5 4 3 ) x 2 3 ! + ( 8 7 6 5 ) x 4 4 ! + d 2018 d x 2018 x 2 e x 2 = 2018 ! 1008 ! + 2020 ! x 2 2 ! 1009 ! + 2022 ! x 4 4 ! 1010 ! + O ( x 6 ) M = d 2018 d x 2018 x 2 e x 2 x = 0 = 2018 ! 1008 ! = 1009 × 1010 × 1011 × 2018 \begin{aligned} x^2e^{x^2} & = x^2 \left(1 + x^2 + \frac {x^4}{2!} + \frac {x^6}{3!} + \cdots \right) \\ & = x^2 + x^4 + \frac {x^6}{2!} + \frac {x^8}{3!} + \cdots \\ \frac {d^2}{dx^2} x^2e^{x^2} & = 2! + (4\cdot 3)x^2 + \frac {(6 \cdot 5)x^4}{2!} + \frac {(8 \cdot 7)x^6}{3!} + \cdots \\ \frac {d^4}{dx^4} x^2e^{x^2} & = \frac {4!}{2!} + \frac {(6\cdot 5 \cdot 4 \cdot 3)x^2}{3!} + \frac {(8\cdot 7 \cdot 6 \cdot 5)x^4}{4!} + \cdots \\ \implies \frac {d^{2018}}{dx^{2018}} x^2e^{x^2} & = \frac {2018!}{1008!} + \frac {2020!x^2}{2! \cdot 1009!} + \frac {2022!x^4}{4! \cdot 1010!} + O(x^6) \\ \implies M & = \frac {d^{2018}}{dx^{2018}} x^2e^{x^2} \bigg|_{x=0} = \frac {2018!}{1008!} = 1009 \times 1010 \times 1011 \times \cdots 2018 \end{aligned}

The smallest and largest 4-digit prime factors of M M are 1009 and 2017 respectively and their sum 1009 + 2017 = 3026 1009+2017 = \boxed{3026} .

This is wrong. 2018 ! 1008 ! \dfrac{2018!}{1008!} is clearly and even number, so its smallest prime factor is 2, not 1009.

Pi Han Goh - 3 years, 9 months ago

Log in to reply

Sorry, it is referring 4-digit prime factors.

Chew-Seong Cheong - 3 years, 9 months ago

Log in to reply

Then it's important to state that 1000, 1001, ... , 10008 are all composites, otherwise, you need to manually to prove that is no 4-digit primes smaller than 1009.

Pi Han Goh - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...