DEs

Calculus Level 3

( x 2 + y 2 ) d y = x y d x \large (x^2+y^2)\ dy=xy\ dx

Given the above and y ( 1 ) = 1 y(1)=1 and y ( x o ) = e y(x_o)=e . What is the value of x o x_o ?

e 2 + 1 2 \sqrt{\frac{e^2+1}{2}} 2 ( e 2 + 1 ) \sqrt{2(e^2+1)} 3 e \sqrt{3}e 2 ( e 2 1 ) \sqrt{2(e^2-1)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( x 2 + y 2 ) d y = x y d x Divide both sides by x y ( x y + y x ) d y = d x ( x y + y x ) d y d x = 1 Let y = v x d y d x = v + x d v d x ( 1 v + v ) ( v + x d v d x ) = 1 v + x d v d x = v 1 + v 2 x d v d x = v 1 + v 2 v x d v d x = v 3 1 + v 2 1 + v 2 v 3 d v = d x x ( 1 v 3 + 1 v ) d v = 1 x d x 1 2 v 2 ln v = ln x + C where C is the constant of integration. 1 2 ( 1 2 ) ln 1 = ln 1 + C when x = 1 , y = 1 , v = 1 C = 1 2 1 2 v 2 ln v = ln x + 1 2 y ( x o ) = e v = e x o x o 2 2 e 2 ln e + ln 1 = ln 1 + 1 2 x o 2 2 e 2 1 = 1 2 x o = 3 e \begin{aligned} (x^2+y^2) \ dy & = xy \ dx & \small \color{#3D99F6} \text{Divide both sides by }xy \\ \left(\frac xy + \frac yx \right) \ dy & = dx \\ \left(\frac xy + \frac yx \right) \frac {dy}{dx} & = 1 & \small \color{#3D99F6} \text{Let } y = vx \implies \frac {dy}{dx} = v + x\frac {dv}{dx} \\ \left(\frac 1v + v \right) \left(v + x\frac {dv}{dx}\right) & = 1 \\ v + x\frac {dv}{dx} & = \frac v{1+v^2} \\ x\frac {dv}{dx} & = \frac v{1+v^2} - v \\ x\frac {dv}{dx} & = - \frac {v^3}{1+v^2} \\ - \frac {1+v^2}{v^3} dv & = \frac {dx}x \\ - \int \left(\frac 1{v^3} + \frac 1v\right) dv & = \int \frac 1x \ dx \\ \frac 1{2v^2} - \ln v & = \ln x + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ \frac 1{2(1^2)} - \ln 1 & = \ln 1 + C & \small \color{#3D99F6} \text{when } x = 1, \ y = 1, \implies v = 1 \\ \implies C & = \frac 12 \\ \implies \frac 1{2v^2} - \ln v & = \ln x + \frac 12 & \small \color{#3D99F6} y(x_o) = e \implies v = \frac e{x_o} \\ \frac {x_o^2}{2e^2} - \ln e + \ln 1 & = \ln 1 + \frac 12 \\ \frac {x_o^2}{2e^2} - 1 & = \frac 12 \\ \implies x_o & = \boxed{\sqrt 3 e} \end{aligned}

Sabhrant Sachan
Nov 5, 2017

x 2 d y + y 2 d y = x y d x x ( x d y y d x ) + y 2 d y = 0 x 3 d ( y x ) + y 2 d y = 0 divide both sides by y 3 and integrate 1 2 x 2 y 2 + ln y + c = 0 for x = 1 y = 1 , c = 1 2 for y = e x o = 3 e \begin{aligned} x^2 \ dy+y^2 \ dy & = xy \ dx \\ x\left( x \ dy - y \ dx \right) +y^2 \ dy & = 0 \\ x^3 \ d \left( \dfrac{y}{x} \right) +y^2 \ dy & = 0 & \color{#3D99F6}{\small{ \text{divide both sides by } y^3 \text{ and integrate }}} \\ -\dfrac{1}{2} \cdot \dfrac{x^2}{y^2} + \ln{y} + c = 0 \\ \text{for } x=1 \hspace{4mm} y=1 \hspace{2mm},\hspace{2mm} c = \dfrac{1}{2} \\ \text{for } y=e \hspace{4mm} x_{o}=\sqrt{3}e \hspace{4mm} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...