Descartes Sangaku : The Aberration

Geometry Level 5
  • The diagram shows a circle with radius 25. Inside this circle, we inscribe a yellow circle with radius 16 and a red circle with radius 9.
  • We pack the space inside the circle with radius 25 with an infinite number of purple, blue (cyan) and green circles.
  • The radius of the 100th purple circle can be expressed as : a b \boxed{\frac{a}{b}} where a a and b b are coprime positive integers
  • The radius of the 100th green circle can be expressed as : c d \boxed{\frac{c}{d}} where c c and d d are coprime positive integers
  • The radius of the 100th blue (cyan) circle can be expressed as : e f \boxed{\frac{e}{f}} where e e and f f are coprime positive integers
  • Evaluate : f d c b a e \boxed{f-d-c\cdot b-a\cdot e}
  • NOTE : Consider the circles only on the left or on the right side to count the circles from 1 to 100. To differenciate cyan circles and purple circles : Cyan circles are smaller and purple circles are the biggest


The answer is 550560.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Valentin Duringer
Jul 22, 2020
  • Getting the radii of the circles one after the other is very easy using Descartes circle's theorem, the real difficulty is finding a general expression to compute the radius of the nth circle

  • P u r p l e \color{#69047E}Purple c i r c l e s \color{#69047E}circles : The radii of the circles are in the sequence : 3600 481 \boxed{\frac{3600}{481}} , 3600 724 \boxed{\frac{3600}{724}} , 3600 1129 \boxed{\frac{3600}{1129}} , 3600 1696 \boxed{\frac{3600}{1696}} , 3600 2425 \boxed{\frac{3600}{2425}}
  • The numerator never changes and stay 3600 3600 but the denominator is trickier but we notice that:
  • 724 481 = 243 = 81 + 162 1 \boxed{724-481=243=81+162\cdot 1}
  • 1169 724 = 405 = 81 + 162 2 \boxed{1169-724=405=81+162\cdot 2}
  • 1696 1129 = 567 = 81 + 162 3 \boxed{1696-1129=567=81+162\cdot 3}
  • 2425 1696 = 729 = 81 + 162 4 \boxed{2425-1696=729=81+162\cdot 4}
  • We can conclude that : R p n = 3600 400 + 81 n + 162 n n 1 2 = 3600 81 n 2 + 400 \boxed{Rp_n=\frac{3600}{\:400+81n+162n\cdot \:\frac{n-1}{2}}=\frac{3600}{\:81n^2+400}}
  • Then R p 100 = 9 2026 \boxed{Rp_{100}=\frac{9}{2026}} then a = 9 \boxed{a=9} and b = 2026 \boxed{b=2026}

  • G r e e n \color{#20A900}Green c i r c l e s \color{#20A900}circles : The radii of the circles are in the sequence : 900 589 \boxed{\frac{900}{589}} , 900 751 \boxed{\frac{900}{751}} , 900 1075 \boxed{\frac{900}{1075}} , 900 1561 \boxed{\frac{900}{1561}} , 900 2209 \boxed{\frac{900}{2209}}
  • The numerator never changes and stay 900 900 but the denominator is trickier but we notice that:
  • 751 589 = 162 = 162 1 \boxed{751-589=162=162\cdot 1}
  • 1075 751 = 324 = 162 2 \boxed{1075-751=324=162\cdot 2}
  • 1561 1075 = 486 = 162 3 \boxed{1561-1075=486=162\cdot 3}
  • 2209 1561 = 648 = 162 4 \boxed{2209-1561=648=162\cdot 4}
  • We can conclude that : R g n = 900 589 + 162 n n 1 2 = 900 81 n 2 81 n + 589 \boxed{Rg_n=\frac{900}{589+162n\cdot \frac{n-1}{2}}=\frac{900}{81n^2-81n+589}}
  • Then R g 100 = 900 802489 \boxed{Rg_{100}=\frac{900}{802489}} then c = 900 \boxed{c=900} and d = 802489 \boxed{d=802489}

  • B l u e \color{#3D99F6}Blue c i r c l e s \color{#3D99F6}circles : The radii of the circles are in the sequence : 3600 1249 \boxed{\frac{3600}{1249}} , 3600 1897 \boxed{\frac{3600}{1897}} , 3600 3193 \boxed{\frac{3600}{3193}} , 3600 5137 \boxed{\frac{3600}{5137}} , 3600 7729 \boxed{\frac{3600}{7729}}

  • The numerator never changes and stay 3600 3600 but the denominator is trickier but we notice that:
  • 1897 1249 = 648 = 648 1 \boxed{1897-1249=648=648\cdot 1}
  • 3193 1897 = 1296 = 648 2 \boxed{3193-1897=1296=648\cdot 2}
  • 5137 3193 = 1944 = 648 3 \boxed{5137-3193=1944=648\cdot 3}
  • 7729 5137 = 2592 = 648 4 \boxed{7729-5137=2592=648\cdot 4}
  • We can conclude that : R b n = 3600 1249 + 648 n n 1 2 = 3600 324 n 2 324 n + 1249 \boxed{Rb_n=\frac{3600}{1249+648n\cdot \frac{n-1}{2}}=\frac{3600}{324n^2-324n+1249}}
  • Then R b 100 = 3600 3208849 \boxed{Rb_{100}=\frac{3600}{3208849}} then e = 3600 \boxed{e=3600} and d = 3208849 \boxed{d=3208849}

  • 3208849 802489 900 × 2026 9 × 3600 = 550560 \boxed{3208849-802489-900 \times 2026-9 \times 3600=550560}
David Vreken
Jul 23, 2020

By Descartes’ Theorem , the radii p n p_n of the purple circles are defined by 1 p n = 1 16 + 1 p n 1 1 25 + 2 1 16 p n 1 1 16 25 1 25 p n 1 \frac{1}{p_n} = \frac{1}{16} + \frac{1}{p_{n-1}} - \frac{1}{25} + 2\sqrt{\frac{1}{16p_{n-1}} - \frac{1}{16 \cdot 25} - \frac{1}{25p_{n-1}}} , which with p 0 = 9 p_0 = 9 can inductively shown to be p n = 3600 81 n 2 + 400 p_n = \frac{3600}{81n^2+400} . Therefore, p 99 = 3600 81 9 9 2 + 400 = 3600 794281 p_{99} = \frac{3600}{81 \cdot 99^2+400} = \frac{3600}{794281} and p 100 = 3600 81 10 0 2 + 400 = 9 2026 p_{100} = \frac{3600}{81 \cdot 100^2+400} = \frac{9}{2026} , so a = 9 a = 9 and b = 2026 b = 2026 .

Also by Descartes’ Theorem, the radius of the 10 0 th 100^{\text{th}} green circle is g 100 = 1 1 p 99 + 1 p 100 + 1 16 + 2 1 p 99 p 100 + 1 16 p 99 + 1 16 p 100 = 900 802489 g_{100} = \cfrac{1}{\frac{1}{p_{99}} + \frac{1}{p_{100}} + \frac{1}{16} + 2\sqrt{\frac{1}{p_{99}p_{100}} + \frac{1}{16p_{99}} + \frac{1}{16p_{100}}}} = \frac{900}{802489} , so c = 900 c = 900 and d = 802489 d = 802489 .

And the radius of the 10 0 th 100^{\text{th}} cyan circle is c 100 = 1 1 p 99 + 1 p 100 1 25 + 2 1 p 99 p 100 1 25 p 99 1 25 p 100 = 3600 3208849 c_{100} = \cfrac{1}{\frac{1}{p_{99}} + \frac{1}{p_{100}} - \frac{1}{25} + 2\sqrt{\frac{1}{p_{99}p_{100}} - \frac{1}{25p_{99}} - \frac{1}{25p_{100}}}} = \frac{3600}{3208849} , so e = 3600 e = 3600 and f = 3208849 f = 3208849 .

Therefore, f d c b a e = 3208849 802489 900 2026 9 3600 = 550560 f - d - c \cdot b - a \cdot e = 3208849 - 802489 - 900 \cdot 2026 - 9 \cdot 3600 = \boxed{550560} .

What would we do without that theorem am i right? ;)

Valentin Duringer - 10 months, 3 weeks ago

Log in to reply

it definitely made things "easier"!

David Vreken - 10 months, 3 weeks ago

this question should be level 100000, at least level 5. i'm going mad how is this level 4

Justin Arun - 10 months, 3 weeks ago

Log in to reply

Ahaha oh well...i think the website should do more than 5 levels anyway...there is a big difficulty gap between some level 5 problems and other level 5 problems. Moreover it should be discussed why a problem is difficult to help better categorize

Valentin Duringer - 10 months, 3 weeks ago

Did you actually make this problem, or did you get it from somewhere else?

Justin Arun - 10 months, 3 weeks ago

All my problems are original. Althought this figure could have been studied in the past since this pattern is quit basic.

Valentin Duringer - 10 months, 3 weeks ago

It's a brilliant problem.

I've actually made a problem myself here . I really want to get to 1,000 solvers, so please could you share the link elsewhere on Brilliant?

Justin Arun - 10 months, 3 weeks ago

Thank you . Sure of course its great to see such a young problemist !

Valentin Duringer - 10 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...