Descartes Sangaku : The End part II

Geometry Level pending
  • The diagram shows a black circle of radius 25 \boxed{25} .
  • We drawn an horizontal black line to divide this circle into two circular segments. This line a length 48 \boxed{48} .
  • Now we pack the top circulair segment with 3 types of circles : Y e l l o w \color{#CEBB00}Yellow , C y a n \color{cyan}Cyan and P u r p l e \color{#69047E}Purple .
  • Then we pack the bottom circular segment with 3 types of circles : G r e e n \color{#20A900}Green , R e d \color{#D61F06}Red and P i n k \color{#E81990}Pink

  • Note : The two biggest yellow circles are congruent.
  • The bottom circular segment is larger than the top circular segment
  • We count the circles starting from the largest of its sequence to the right (or left) towards the infinitely small circles

  • We focus on the C y a n \color{cyan}Cyan and R e d \color{#D61F06}Red circles in this problem. The largest G r e e n \color{#20A900}Green circle is the 0 t h 0^{th} circle of its sequence. The largest Y e l l o w \color{#CEBB00}Yellow circle is the 0 t h 0^{th} circle of its sequence.

The question: The radius of the n t h n^{th} C y a n \color{cyan}Cyan circle (for n 0 n≥0 ) can be expressed as a a n + b ( a a n + b a ) a \boxed{\frac{a^{a\cdot n+b}}{\left(a^{a\cdot \:n}+b-a\right)^a}} and the radius of the n t h n^{th} R e d \color{#D61F06}Red circle (for n 0 n≥0 ) can be expressed as c d ( n + b a ) ( d ( a n + b a ) + b a ) a \boxed{\frac{c\cdot d^{\left(n+b-a\right)}}{\left(\sqrt{d}^{\left(a\cdot n+b-a\right)}+b-a\right)^a}} where a a , b b , c c , d d are positive integers. Calculate b c d a \boxed{b\cdot \sqrt[a]{c\cdot d}}


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Valentin Duringer
Aug 20, 2020
  • To solve this question you'll need the height of the circular segments and the radii of the G r e e n \color{#20A900}Green and Y e l l o w \color{#CEBB00}Yellow circles. There is a solution for those steps in part 1 of this series.

  • Let's focus on the C y a n \color{cyan}Cyan circles. Using Descartes circle's theorem we find the 5 first C y a n \color{cyan}Cyan radii.
  • R 0 \color{cyan}R_0 = 8 4 \boxed{\frac{8}{4}}
  • R 0 \color{cyan}R_0 = 32 25 \boxed{\frac{32}{25}}
  • R 0 \color{cyan}R_0 = 128 289 \boxed{\frac{128}{289}}
  • R 0 \color{cyan}R_0 = 512 4225 \boxed{\frac{512}{4225}}
  • R 0 \color{cyan}R_0 = 2048 66049 \boxed{\frac{2048}{66049}}

  • Let's look at the numerator, we easily see that it's each time an odd power of 2, then it can be written as 2 2 n + 3 \boxed{2^{2n+3}}

  • The denominator is also an easy challenge, we can rewritte them and spot a pattern:
  • 4 = ( 2 ) 2 = ( 4 0 + 1 ) 2 \boxed{4=\left(2\right)^2=\left(4^0+1\right)^2}
  • 25 = ( 5 ) 2 = ( 4 1 + 1 ) 2 \boxed{25=\left(5\right)^2=\left(4^1+1\right)^2}
  • 289 = ( 17 ) 2 = ( 4 2 + 1 ) 2 \boxed{289=\left(17\right)^2=\left(4^2+1\right)^2}
  • 4225 = ( 65 ) 2 = ( 4 3 + 1 ) 2 \boxed{4225=\left(65\right)^2=\left(4^3+1\right)^2}
  • 66049 = ( 257 ) 2 = ( 4 4 + 1 ) 2 \boxed{66049=\left(257\right)^2=\left(4^4+1\right)^2}
  • We can conclude that the denominator can be written as ( 4 n + 1 ) 2 \boxed{\left(4^n+1\right)^2}

  • Finally R n \color{cyan}R_n = 2 2 n + 3 ( 4 n + 1 ) 2 = 2 2 n + 3 ( 2 2 n + 3 2 ) 2 \boxed{\frac{2^{2n+3}}{\left(4^n+1\right)^2}=\frac{2^{2\cdot n+3}}{\left(2^{2\cdot n}+3-2\right)^2}}
  • Then a = 2 \boxed{a=2} and b = 3 \boxed{b=3}

  • Let's focus on the r e d \color{#D61F06}red circles. Using Descartes circle's theorem we find the 5 first R e d \color{#D61F06}Red radii.
  • R 0 \color{#D61F06}R_0 = 9 4 \boxed{\frac{9}{4}}
  • R 1 \color{#D61F06}R_1 = 81 196 \boxed{\frac{81}{196}}
  • R 2 \color{#D61F06}R_2 = 729 14884 \boxed{\frac{729}{14884}}
  • R 3 \color{#D61F06}R_3 = 6561 1196836 \boxed{\frac{6561}{1196836}}
  • R 4 \color{#D61F06}R_4 = 59049 96864964 \boxed{\frac{59049}{96864964}}

  • We easily see that the numerators are odd power of 9 9 , then the denominator can be written as 9 n + 1 \boxed{9^{n+1}}

  • The denominator is also an easy challenge, we can rewritte them and spot a pattern:
  • 4 = 16 4 = ( 4 ) 2 4 = ( 3 2 0 + 1 + 1 ) 2 4 \boxed{4=\frac{16}{4}=\frac{\left(4\right)^2}{4}=\frac{\left(3^{2\cdot \:0+1}+1\right)^2}{4}}
  • 196 = 784 4 = ( 28 ) 2 4 = ( 3 2 1 + 1 + 1 ) 2 4 \boxed{196=\frac{784}{4}=\frac{\left(28\right)^2}{4}=\frac{\left(3^{2\cdot \:1+1}+1\right)^2}{4}}
  • 14884 = 59536 4 = ( 244 ) 2 4 = ( 3 2 2 + 1 + 1 ) 2 4 \boxed{14884=\frac{59536}{4}=\frac{\left(244\right)^2}{4}=\frac{\left(3^{2\cdot \:2+1}+1\right)^2}{4}}
  • 1196836 = 4787344 4 = ( 2188 ) 2 4 = ( 3 2 3 + 1 + 1 ) 2 4 \boxed{1196836=\frac{4787344}{4}=\frac{\left(2188\right)^2}{4}=\frac{\left(3^{2\cdot \:3+1}+1\right)^2}{4}}
  • 96864964 = 387459856 4 = ( 19684 ) 2 4 = ( 3 2 4 + 1 + 1 ) 2 4 \boxed{96864964=\frac{387459856}{4}=\frac{\left(19684\right)^2}{4}=\frac{\left(3^{2\cdot \:4+1}+1\right)^2}{4}}
  • We can conclude the denominator can be written as ( 3 2 n + 1 + 1 ) 2 4 \boxed{\frac{\left(3^{2n+1}+1\right)^2}{4}}

  • Thus, R n \color{#D61F06}R_n = 4 9 n + 1 ( 3 2 n + 1 + 1 ) 2 = 4 9 ( n + 3 2 ) ( 9 ( 2 n + 3 2 ) + 3 2 ) 2 \boxed{\frac{4\cdot \:\:9^{n+1}}{\left(3^{2n+1}+1\right)^2}=\frac{4\cdot 9^{\left(n+3-2\right)}}{\left(\sqrt{9}^{\left(2\cdot n+3-2\right)}+3-2\right)^2}}
  • Then c = 4 \boxed{c=4} and d = 9 \boxed{d=9}

  • b c d a = 3 4 9 2 = 18 \boxed{b\cdot \sqrt[a]{c\cdot d}=3\cdot \sqrt[2]{4\cdot 9}=18}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...