Descartes Sangaku : The Golem

Geometry Level 4
  • The diagram shows a red circle with radius R 1 = 4 \boxed{R_1=4} and a green circle with radius R 2 = 1 \boxed{R_2=1} tangent to each other and tangent to the same black line.
  • We pack the space between the red circle, the green circle and the black line with circles in a certain pattern :
  • The next circle of the sequence is inscribed between the black line and the two last circles of the sequence and this pattern goes to infinity.
  • Evaluate : ( lim n R n R n + 1 lim n R n + 1 R n ) 2 3 \boxed{\left (\lim\limits_{n\to\infty}\sqrt{\frac{R_n}{R_{n+1}}}-\lim\limits_{n\to\infty}\sqrt{\frac{R_{n+1}}{R_n}} \right )^{\frac{2}{3}}}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tapas Mazumdar
Aug 12, 2020

Descartes' circle theorem gives a nice recursion for the radius of circle R n + 1 R_{n+1} squeezed between two larger circles, R n R_n and R n 1 R_{n-1} as

1 R n = 1 R n 1 + 1 R n 2 + 2 R n 1 R n 2 , n 3 \dfrac{1}{R_n} = \dfrac{1}{R_{n-1}} + \dfrac{1}{R_{n-2}} + \dfrac{2}{\sqrt{R_{n-1} R_{n-2}}}, \quad n \ge 3 with R 1 = 4 , R 2 = 1 R_1 = 4, R_2 = 1 .

We observe the first six values of R n R_n using the recursion above

R 1 R_1 4 = 4 / 1 4 = {4}/{1}
R 2 R_2 1 = 4 / 4 1 = {4}/{4}
R 3 R_3 4 / 9 {4}/{9}
R 4 R_4 4 / 25 {4}/{25}
R 5 R_5 1 / 16 = 4 / 64 {1}/{16} = {4}/{64}
R 6 R_6 4 / 169 {4}/{169}

Since the numbers in the denominator seem to be squares of 1 , 2 , 3 , 5 , 8 , 13 1,2,3,5,8,13 respectively, we make the following claim:

R n = 4 F n + 1 2 R_n = \dfrac{4}{F_{n+1}^2} where F n F_n denotes the n t h n^{th} Fibonacci number.

We prove this by strong induction. The base case is already taken care of as shown above. We now assume the above holds true i N : i k \forall i \in \mathbb{N} : i \le k . We now prove that k + 1 k+1 case holds true.

To prove this, we use the recursion obtained at the beginning to get

1 R k + 1 = 1 R k + 1 R k 1 + 2 R k R k 1 = F k + 1 2 4 + F k 2 4 + F k F k + 1 2 = ( F k 2 + F k + 1 2 ) 2 = F k + 2 2 4 \begin{aligned} \dfrac{1}{R_{k+1}} &= \dfrac{1}{R_{k}} + \dfrac{1}{R_{k-1}} + \dfrac{2}{\sqrt{R_{k} R_{k-1}}} \\ &= \dfrac{F^2_{k+1}}{4} + \dfrac{F^2_{k}}{4} + \dfrac{F_k F_{k+1}}{2} \\ &= \left( \dfrac{F_k}{2} + \dfrac{F_{k+1}}{2} \right)^2 \\ &= \dfrac{F_{k+2}^2}{4} \end{aligned}

thus the induction holds n N \forall n \in \mathbb{N} and the formula holds true.

Hence,

lim n R n R n + 1 = lim n F n + 2 F n + 1 = φ \lim_{n \to \infty} \sqrt{\dfrac{R_n}{R_{n+1}}} = \lim_{n \to \infty} \dfrac{F_{n+2}}{F_{n+1}} = \varphi

Thus,

( lim n R n R n + 1 lim n R n + 1 R n ) 2 / 3 = ( φ 1 φ ) 2 / 3 = 1 2 / 3 = 1 \begin{aligned} \left( \lim_{n \to \infty} \sqrt{\dfrac{R_n}{R_{n+1}}} - \lim_{n \to \infty} \sqrt{\dfrac{R_{n+1}}{R_{n}}} \right)^{{2}/{3}} &= \left( \varphi - \frac{1}{\varphi} \right)^{{2}/{3}} \\ &= 1^{{2}/{3}} \\ &= 1 \end{aligned}

Impeccable demonstration

Valentin Duringer - 10 months ago
Valentin Duringer
Aug 11, 2020
  • Using Descartes' Circle Theorem we find easily the following radii :
  • R 1 = 1 \boxed{R_1=1}
  • R 2 = 4 \boxed{R_2=4}
  • R 3 = 4 9 \boxed{R_3=\frac{4}{9}}
  • R 4 = 4 25 \boxed{R_4=\frac{4}{25}}
  • R 5 = 1 16 \boxed{R_5=\frac{1}{16}}
  • R 6 = 4 169 \boxed{R_6=\frac{4}{169}}
  • R 7 = 4 441 \boxed{R_7=\frac{4}{441}}

  • They can be rewritten as :
  • R 1 = 4 1 2 \boxed{R_1=\frac{4}{1^{2}}}
  • R 2 = 4 2 2 \boxed{R_2=\frac{4}{2^{2}}}
  • R 3 = 4 3 2 \boxed{R_3=\frac{4}{3^{2}}}
  • R 4 = 4 5 2 \boxed{R_4=\frac{4}{5^{2}}}
  • R 5 = 4 8 2 \boxed{R_5=\frac{4}{8^{2}}}
  • R 6 = 4 1 3 2 \boxed{R_6=\frac{4}{13^{2}}}
  • R 7 = 4 2 1 2 \boxed{R_7=\frac{4}{21^{2}}}

  • What notice that the consecutive denominators are the fibonacci numbers squared !
  • We can conclude that R n = 2 2 F n 2 \boxed{R_n=\frac{2^{2}}{F_n^{2}}}
  • Thus lim n R n R n + 1 = lim n F n + 1 F n \boxed{\lim\limits_{n\to\infty}\sqrt{\frac{R_n}{R_{n+1}}}=\lim\limits_{n\to\infty}\frac{F_{n+1}}{F_{n}}} and lim n R n + 1 R n = lim n F n F n + 1 \boxed{\lim\limits_{n\to\infty}\sqrt{\frac{R_{n+1}}{R_{n}}}=\lim\limits_{n\to\infty}\frac{F_{n}}{F_{n+1}}}
  • Moreover, we know this famous identity lim n F n + 1 F n = ϕ = 1 + 5 2 \boxed{\lim\limits_{n\to\infty}\frac{F_{n+1}}{F_n}=\phi=\frac{1+\sqrt{5}}{2}}
  • Then : ( lim n R n R n + 1 lim n R n + 1 R n ) 2 3 = ( ( 1 + 5 2 ) ( 5 1 2 ) ) 2 3 = 1 \boxed{(\lim\limits_{n\to\infty}\sqrt{\frac{R_n}{R_{n+1}}}-\lim\limits_{n\to\infty}\sqrt{\frac{R_{n+1}}{R_n}})^{\frac{2}{3}}=\left(\left(\frac{1+\sqrt{5}}{2}\right)^{\:}-\left(\frac{\sqrt{5}-1}{2}\right)^{\:}\right)^{\frac{2}{3}}=1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...