I would like one fourth, please.

Algebra Level 3

Calculate:

( 4 0 4 + 1 4 ) ( 3 8 4 + 1 4 ) ( 4 4 + 1 4 ) ( 2 4 + 1 4 ) ( 3 9 4 + 1 4 ) ( 3 7 4 + 1 4 ) ( 3 4 + 1 4 ) ( 1 4 + 1 4 ) \large \dfrac{\left(40^4 + \frac{1}{4}\right)\left(38^4 + \frac{1}{4}\right) \cdots \left(4^4 + \frac{1}{4}\right)\left(2^4 + \frac{1}{4}\right)} {\left(39^4 + \frac{1}{4}\right)\left(37^4 + \frac{1}{4}\right) \cdots \left(3^4 + \frac{1}{4}\right)\left(1^4 + \frac{1}{4}\right)}


The answer is 3281.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chan Tin Ping
Dec 30, 2017

First, learn the important factorization. 4 a 4 + 1 = 4 a 4 + 4 a 2 + 1 4 a 2 = ( 2 a 2 + 1 ) 2 ( 2 a ) 2 = ( 2 a 2 2 a + 1 ) ( 2 a 2 + 2 a + 1 ) = ( ( a 1 ) 2 + a 2 ) ( a 2 + ( a + 1 ) 2 ) \begin{aligned} &4a^4+1 \\ =&4a^4+4a^2+1-4a^2 \\ =&(2a^2+1)^2-(2a)^2 \\ =&(2a^2-2a+1)(2a^2+2a+1) \\ =&((a-1)^2+a^2)(a^2+(a+1)^2) \\ \end{aligned} Then, calculate it. ( 4 0 4 + 1 4 ) ( 3 8 4 + 1 4 ) ( 4 4 + 1 4 ) ( 2 4 + 1 4 ) ( 3 9 4 + 1 4 ) ( 3 7 4 + 1 4 ) ( 3 4 + 1 4 ) ( 1 4 + 1 4 ) = k = 1 20 [ ( 2 k ) 4 + 1 4 ] k = 1 20 [ ( 2 k 1 ) 4 + 1 4 ] = k = 1 20 [ 4 ( 2 k ) 4 + 1 ] k = 1 20 [ 4 ( 2 k 1 ) 4 + 1 ] = k = 1 20 [ ( 2 k 1 ) 2 + ( 2 k ) 2 ] [ ( 2 k ) 2 + ( 2 k + 1 ) 2 ] k = 1 20 [ ( 2 k 2 ) 2 + ( 2 k 1 ) 2 ] [ ( 2 k 1 ) 2 + ( 2 k ) 2 ] = k = 1 20 [ ( 2 k ) 2 + ( 2 k + 1 ) 2 ] k = 1 20 [ ( 2 k 2 ) 2 + ( 2 k 1 ) 2 ] = ( 2 2 + 3 2 ) ( 4 2 + 5 2 ) ( 3 8 2 + 3 9 2 ) ( 4 0 2 + 4 1 2 ) ( 0 2 + 1 2 ) ( 2 2 + 3 2 ) ( 3 8 2 + 3 9 2 ) = 4 0 2 + 4 1 2 = 3281 \begin{aligned} &\frac{(40^4 + \frac{1}{4})(38^4 + \frac{1}{4}) … (4^4 + \frac{1}{4})(2^4 + \frac{1}{4})} {(39^4 + \frac{1}{4})(37^4 + \frac{1}{4}) …(3^4 + \frac{1}{4})(1^4 + \frac{1}{4})} \\ =&\frac{\prod_{k=1}^{20} [(2k)^4+\frac{1}{4}]}{\prod_{k=1}^{20} [(2k-1)^4+\frac{1}{4}]} \\ =&\frac{\prod_{k=1}^{20} [4(2k)^4+1]}{\prod_{k=1}^{20} [4(2k-1)^4+1]} \\ =&\frac{\prod_{k=1}^{20} {[(2k-1)^2+(2k)^2][(2k)^2+(2k+1)^2]} }{\prod_{k=1}^{20} {[(2k-2)^2+(2k-1)^2][(2k-1)^2+(2k)^2]}} \\ =&\frac{\prod_{k=1}^{20} [(2k)^2+(2k+1)^2]} {\prod_{k=1}^{20} [(2k-2)^2+(2k-1)^2]} \\ =&\frac{(2^2+3^2)(4^2+5^2)…(38^2+39^2)(40^2+41^2)} {(0^2+1^2)(2^2+3^2)…(38^2+39^2)} \\ =&40^2+41^2 \\ =&\large 3281 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...