Determinant evaluating!

Algebra Level 2

M = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 M= \left | \begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 & 17 & 18 \\ 19 & 20 & 21 & 22 & 23 & 24 \\ 25 & 26 & 27 & 28 & 29 & 30 \\ 31 & 32 & 33 & 34 & 35 & 36 \end{array} \right |

Evaluate the matrix determinant above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Abhi Kumbale
Feb 28, 2015

We can easily see that if we subtract elements of row 1 by row 2 and elements of row 2 by row 3 we get a new determinant with two rows equal. So by properties of determinants the determinant equates to zero

Moderator note:

Bingo! Would this be true for all n × n n \times n matrix if the matrix is of the form below?

M = 1 2 3 n n + 1 n + 2 2 n 2 n + 1 ( n 1 ) n n 2 1 n 2 M= \left | \begin{array}{cccccc} 1 & 2 & 3 & \cdot & \cdot & n \\ n+1 & n+2 & \cdot & \cdot & \cdot & 2n \\ 2n+1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & (n-1)n \\ \cdot & \cdot & \cdot & \cdot & n^2-1 & n^2 \end{array} \right |

Yes or will always be true

Kumar Krish - 1 year, 8 months ago
Mikael Marcondes
Feb 7, 2015

Since the first element ( a 11 {a_{11}} ) is 1 1 , we can use Chió's rule, which states a new matrix, with the same determinant as the first and order one unit lesser, can be achieved through the following graphical transformation:

M = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 M= \left | \begin{array}{cccccc} 1 & {\color{#D61F06}2} & {\color{#D61F06}3} & {\color{#D61F06}4} & {\color{#D61F06}5} & {\color{#D61F06}6}\\ {\color{#3D99F6}{7}} & 8 & 9 & 10 & 11 & 12 \\ {\color{#3D99F6}{13}} & 14 & 15 & 16 & 17 & 18 \\ {\color{#3D99F6}{19}} & 20 & 21 & 22 & 23 & 24 \\ {\color{#3D99F6}{25}} & 26 & 27 & 28 & 29 & 30 \\ {\color{#3D99F6}{31}} & 32 & 33 & 34 & 35 & 36 \end{array} \right |

M = 8 2 . 7 9 3 . 7 10 4 . 7 11 5 . 7 12 6 . 7 14 2 . 13 15 3 . 13 16 4 . 13 17 5 . 13 18 6 . 13 20 2 . 19 21 3 . 19 22 4 . 19 23 5 . 19 24 6 . 19 26 2 . 25 27 3 . 25 28 4 . 25 29 5 . 25 30 6 . 25 32 2 . 31 33 3 . 31 34 4 . 31 35 5 . 31 36 6 . 31 M= \left | \begin{array}{ccccc} 8-{\color{#D61F06}{2}}.{\color{#3D99F6}{7}} & 9-{\color{#D61F06}{3}}.{\color{#3D99F6}{7}} & 10-{\color{#D61F06}{4}}.{\color{#3D99F6}{7}} & 11-{\color{#D61F06}{5}}.{\color{#3D99F6}{7}} & 12-{\color{#D61F06}{6}}.{\color{#3D99F6}{7}} \\ 14-{\color{#D61F06}{2}}.{\color{#3D99F6}{13}} & 15-{\color{#D61F06}{3}}.{\color{#3D99F6}{13}} & 16-{\color{#D61F06}{4}}.{\color{#3D99F6}{13}} & 17-{\color{#D61F06}{5}}.{\color{#3D99F6}{13}} & 18-{\color{#D61F06}{6}}.{\color{#3D99F6}{13}} \\ 20-{\color{#D61F06}{2}}.{\color{#3D99F6}{19}} & 21-{\color{#D61F06}{3}}.{\color{#3D99F6}{19}} & 22-{\color{#D61F06}{4}}.{\color{#3D99F6}{19}} & 23-{\color{#D61F06}{5}}.{\color{#3D99F6}{19}} & 24-{\color{#D61F06}{6}}.{\color{#3D99F6}{19}} \\ 26-{\color{#D61F06}{2}}.{\color{#3D99F6}{25}} & 27-{\color{#D61F06}{3}}.{\color{#3D99F6}{25}} & 28-{\color{#D61F06}{4}}.{\color{#3D99F6}{25}} & 29-{\color{#D61F06}{5}}.{\color{#3D99F6}{25}} & 30-{\color{#D61F06}{6}}.{\color{#3D99F6}{25}} \\ 32-{\color{#D61F06}{2}}.{\color{#3D99F6}{31}} & 33-{\color{#D61F06}{3}}.{\color{#3D99F6}{31}} & 34-{\color{#D61F06}{4}}.{\color{#3D99F6}{31}} & 35-{\color{#D61F06}{5}}.{\color{#3D99F6}{31}} & 36-{\color{#D61F06}{6}}.{\color{#3D99F6}{31}} \end{array} \right |

M = 6 12 18 24 30 12 24 36 48 60 18 36 54 72 90 24 48 72 96 120 30 60 90 120 150 M= \left | \begin{array}{ccccc} -6 & -12 & -18 & -24 & -30 \\ -12 & -24 & -36 & -48 & -60 \\ -18 & -36 & -54 & -72 & -90 \\ -24 & -48 & -72 & -96 & -120 \\ -30 & -60 & -90 & -120 & -150 \end{array} \right |

And from determinants properties, like d e t ( c . M ) = c n . d e t ( M ) det(c.M)=c^{n}.det(M) , where c c is a scalar, n n is the order of the matrix and M M is the matrix in question, we can make it becomes:

( 6 ) 6 . M = 1 2 3 4 5 2 4 6 8 10 3 6 9 12 15 4 8 12 16 20 5 10 15 20 25 (-6)^{6}.M= \left | \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 8 & 10 \\ 3 & 6 & 9 & 12 & 15 \\ 4 & 8 & 12 & 16 & 20 \\ 5 & 10 & 15 & 20 & 25 \end{array} \right |

Applying Chió's rule once again, we get that the determinant is the same that the given by the fourth order matrix below:

( 6 ) 6 . M = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (-6)^{6}.M= \left | \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right |

Since the determinant of a null matrix is zero, hence, the answer is M = 0 \boxed{M=0} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...