Determinant of the Hessian

Calculus Level 2

What is the determinant of the Hessian matrix corresponding to the function

f ( x , y ) = 1 2 ( x 2 + y 2 ) 2 ? f(x,y) = \frac12 \big(x^2+y^2\big)^2 ?

4 4 12 ( x 2 + y 2 ) 2 12\big(x^2+y^2\big)^2 x 2 + y 2 x^2+y^2 x 4 + y 4 4 x y x^4+y^4 - 4xy

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matt DeCross
May 10, 2016

The vector of first derivatives is:

D f = ( 2 x ( x 2 + y 2 ) 2 y ( x 2 + y 2 ) ) . Df = \begin{pmatrix} 2x(x^2 + y^2) & 2y (x^2 + y^2) \end{pmatrix}.

The Hessian matrix is thus:

H = ( 2 y 2 + 6 x 2 4 x y 4 x y 2 x 2 + 6 y 2 ) . H = \begin{pmatrix} 2y^2 + 6x^2 & 4xy \\ 4xy & 2x^2 + 6y^2 \end{pmatrix}.

and so its determinant is:

det H = 12 x 4 + 24 x 2 y 2 + 12 y 4 = 12 ( x 2 + y 2 ) 2 \begin{aligned} \det H &= 12x^4 + 24 x^2 y^2 + 12 y^4 \\ &= 12(x^2 + y^2)^2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...