Determinant

Algebra Level 3

If x x , y y and z z are positive real numbers, find the value of the determinant below:

1 log x y log x z log y x 1 log y z log z x log z y 1 \large \begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix}

log e x y z \log_e xyz 1 log x y z -\log xyz 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: 3 by 3 Determinant

Δ = 1 log x y log x z log y x 1 log y z log z x log z y 1 = 1 log y log x log z log x log x log y 1 log z log y log x log z log y log z 1 = 1 × 1 × 1 + log y log x × log z log y × log x log z + log z log x × log x log y × log y log z 1 × log z log y × log y log z log y log x × log x log y × 1 log z log x × 1 × log x log z = 1 + 1 + 1 1 1 1 = 0 \begin{aligned} \Delta & = \begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix} \\ & = \begin{vmatrix} 1 & \frac {\log y}{\log x} & \frac {\log z}{\log x} \\ \frac {\log x}{\log y} & 1 & \frac {\log z}{\log y} \\ \frac {\log x}{\log z} & \frac {\log y}{\log z} & 1 \end{vmatrix} \\ & = \small 1 \times 1 \times 1 + \frac {\log y}{\log x} \times \frac {\log z}{\log y} \times \frac {\log x}{\log z} + \frac {\log z}{\log x} \times \frac {\log x}{\log y} \times \frac {\log y}{\log z} \\ & \quad \small - 1 \times \frac {\log z}{\log y} \times \frac {\log y}{\log z} - \frac {\log y}{\log x} \times \frac {\log x}{\log y} \times 1 - \frac {\log z}{\log x} \times 1 \times \frac {\log x}{\log z} \\ & = 1+1+1-1-1-1 \\ & = \boxed{0} \end{aligned}

Other than expanding out the determinant, is there another approach that we can take?

Calvin Lin Staff - 4 years, 7 months ago
Calvin Lin Staff
Nov 16, 2016

Consider the first 2 columns of the matrix. We have

log x y ( 1 log y x log z x ) = ( log x y log y log x × log x log y log y log x × log x log z ) = ( log x y 1 log z x ) . \log_x y \begin{pmatrix} 1 \\ \log_y x \\ \log_z x \\ \end{pmatrix} = \begin{pmatrix} \log_x y \\ \frac{ \log y}{\log x} \times \frac{ \log x} { \log y } \\ \frac{ \log y}{\log x} \times \frac{ \log x} { \log z } \\ \end{pmatrix} = \begin{pmatrix} \log_x y \\ 1 \\ \log_z x \\ \end{pmatrix}.

Since the second column is a linear multiple of the first column, the determinant of the matrix is 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...