Determinants can be tiresome

Algebra Level 3

If x 2 2 x + 3 7 x + 2 x + 4 2 x + 7 x 2 x + 2 3 x 3 2 x 1 x 2 4 x + 7 = a x 6 + b x 5 + c x 4 + d x 3 + e x 2 + f x + g \left | \begin{array}{ccc} x^{2}-2x+3 & 7x+2 & x+4 \\ 2x+7 & x^{2}-x+2& 3x \\ 3 & 2x-1 & x^{2}-4x+7 \\ \end{array} \right | =ax^{6}+bx^{5}+cx^{4}+dx^{3}+ex^{2}+fx+g then the value of g g is

None of these. -2 4 12 1 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akhil Bansal
Nov 2, 2015

x 2 2 x + 3 7 x + 2 x + 4 2 x + 7 x 2 x + 2 3 x 3 2 x 1 x 2 4 x + 7 = a x 6 + b x 5 + c x 4 + d x 3 + e x 2 + f x + g \Rightarrow \left| \begin{array}{ccc} x^{2}-2x+3 & 7x+2 & x+4 \\ 2x+7 & x^{2}-x+2 & 3x \\ 3 & 2x-1 & x^{2}-4x+7 \\ \end{array} \right | =ax^{6}+bx^{5}+cx^{4}+dx^{3}+ex^{2}+fx+\color{#3D99F6}g

Above equation is an identity. Hence, it must be true for all real x,
Substituting x = 0 x = 0 .

3 2 4 7 2 0 3 1 7 = g \Rightarrow \left| \begin{array}{ccc} 3 & 2 & 4 \\ 7 & 2 & 0 \\ 3 & -1 & 7 \\ \end{array} \right | = \color{#3D99F6}g

3 ( 14 0 ) 2 ( 49 0 ) + 4 ( 7 6 ) = g \Rightarrow 3 * (14 - 0) - 2* ( 49 - 0) + 4 * (-7 - 6) = \color{#3D99F6}g g = 108 \Rightarrow \color{#3D99F6}g = -108

edit it, as value of determinant comes out to be -108 not -134 , but still answer is none of these :)

RAJ RAJPUT - 5 years, 7 months ago

Log in to reply

Thanks, bcos i solved the whole question in my mind, i made mistake in calculating value of determinant.

Akhil Bansal - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...