Determinants JEE2

Algebra Level 3

Let A = x 2 6 8 3 y 2 9 4 5 z 2 , B = 2 x 3 5 2 2 y 6 1 4 2 z 3 A=\left| \begin{matrix} { x }^{ 2 } & 6 & 8 \\ 3 & y^{ 2 } & 9 \\ 4 & 5 & { z }^{ 2 } \end{matrix} \right| ,B=\left| \begin{matrix} 2x & 3 & 5 \\ 2 & 2y & 6 \\ 1 & 4 & 2z-3 \end{matrix} \right|

If trace ( A ) = trace ( B ) \text{trace}(A)=\text{trace}(B) , then x + y + z x+y+z is equal to

The first part is here

6 None of these 0 i i 5 25

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sujoy Roy
Mar 5, 2015

Here A A and B B are matrices, not determinants.

As t r a c e A = t r a c e B trace{A}=trace{B} ,

x 2 + y 2 + z 2 = 2 x + 2 y + 2 z 3 x^2+y^2+z^2=2x+2y+2z-3

or, ( x 1 ) 2 + ( y 1 ) 2 + ( z 1 ) 2 = 0 (x-1)^2+(y-1)^2+(z-1)^2=0

or, x = y = z = 1 x=y=z=1

or, x + y + z = 3 x+y+z=\boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...