Determinants To Be Determined

Algebra Level 3

A = ( 1 2 3 4 5 2 4 6 8 10 3 6 9 12 15 4 8 12 16 20 5 10 15 20 25 ) B = ( 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 ) \begin{array}{rcl} A & = & \begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 2 & 4 & 6 & 8 & 10\\ 3 & 6 & 9 & 12 & 15\\ 4 & 8 & 12 & 16 & 20\\ 5 & 10 & 15 & 20 & 25 \end{pmatrix} \\ & &\\ B &= & \begin{pmatrix} 1 & -2 & 3 & -4 & 5\\ -2 & 3 & -4 & 5 & -6\\ 3 & -4 & 5 & -6 & 7\\ -4 & 5 & -6 & 7 & -8\\ 5 & -6 & 7 & -8 & 9 \end{pmatrix} \end{array}

Which of the given matrices has the greatest determinant?

Both have the same determinant. Matrix B B Matrix A A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Nov 2, 2018

Both determinants are 0 since the rows are linearly dependent. In A A row 2 is twice row 1, and in B B rows 1 ,2 4, and 5 add up to zero.

Basically, the same answer as Dr. Bretscher's.

By direct computation, ( 1 2 3 4 5 2 4 6 8 10 3 6 9 12 15 4 8 12 16 20 5 10 15 20 25 ) 0 \left|\left| \left( \begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 8 & 10 \\ 3 & 6 & 9 & 12 & 15 \\ 4 & 8 & 12 & 16 & 20 \\ 5 & 10 & 15 & 20 & 25 \\ \end{array} \right)\right|\right| \Longrightarrow 0 and ( 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 ) 0 \left|\left| \left( \begin{array}{rrrrr} 1 & -2 & 3 & -4 & 5 \\ -2 & 3 & -4 & 5 & -6 \\ 3 & -4 & 5 & -6 & 7 \\ -4 & 5 & -6 & 7 & -8 \\ 5 & -6 & 7 & -8 & 9 \\ \end{array} \right)\right|\right| \Longrightarrow 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...