Determinants

Algebra Level 4

x 2 + x x + 1 x 2 2 x 2 + 3 x 1 3 x 3 x 3 x 2 + 2 x + 3 2 x 1 2 x 1 = A x + B \left| \begin{matrix} x^2+x & x+1 & x-2 \\ 2x^2+3x-1 & 3x & 3x-3 \\ x^2+2x+3 & 2x-1 & 2x-1 \end{matrix} \right| = Ax+B

A A and B B above are determinants of order 3 3 . Find the value of A + 2 B A+2B .

3 3 None of these \text{ None of these } 1 1 0 0 2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Nov 21, 2016

C = x 2 + x x + 1 x 2 2 x 2 + 3 x 1 3 x 3 x 3 x 2 + 2 x + 3 2 x 1 2 x 1 C = x 2 + x x + 1 x 2 x 1 x 2 x + 1 x + 3 x 2 x + 1 i ) R 2 R 2 2 R 1 i i ) R 3 R 3 R 1 C = x 2 + x x + 1 x 2 4 0 0 x + 3 x 2 x + 1 i ) R 2 R 2 R 3 i i ) Open det from R 2 C = 4 [ ( x + 1 ) 2 ( x 2 ) 2 ] C = \left| \begin{matrix} x^2+x & x+1 & x-2 \\ 2x^2+3x-1 & 3x & 3x-3 \\ x^2+2x+3 & 2x-1 & 2x-1 \end{matrix} \right| \\ C = \left| \begin{matrix} x^2+x & x+1 & x-2 \\ x-1 & x-2 & x+1 \\ x+3 & x-2 & x+1 \end{matrix} \right| \quad \color{#3D99F6}{\begin{matrix} \small{i) R_2\rightarrow R_2-2R_1} \\ \small{ii) R_3\rightarrow R_3-R_1} \end{matrix} } \\ C = \left| \begin{matrix} x^2+x & x+1 & x-2 \\ -4 & 0 & 0 \\ x+3 & x-2 & x+1 \end{matrix} \right| \quad \color{#3D99F6}{\begin{matrix} \small{i) R_2\rightarrow R_2-R_3} \\ \small{ii) \text{ Open det from } R_2 } \end{matrix} } \\ C = 4[(x+1)^2-(x-2)^2]

C = 24 x 12 = A x + B A = 24 , B = 12 A + 2 B = 0 C = 24x-12 = Ax+B \\ A=24 \text{ , }B=-12 \\ \boxed{A+2B = 0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...