Determine the Dot's Distance

Calculus Level 2

The location of a dot P P at a given time t t in the x y xy plane is given by ( x , y ) = ( t sin t , 1 cos t ) (x,y) = (t - \sin t, 1 - \cos t) . What is the distance traveled by P P in the interval 0 t 2 π 0 \leq t \leq 2\pi ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arron Kau Staff
May 13, 2014

We have d x d t = 1 cos t \frac{dx}{dt} = 1 - \cos t and d y d t = sin t \frac{dy}{dt} = \sin t . Let L L be the distance, using the arc length formula, we have

L = 0 2 π ( d x d t ) 2 + ( d y d t ) 2 d t = 0 2 π ( 1 cos t ) 2 + sin 2 t d t = 0 2 π 2 ( 1 cos t ) d t = 0 2 π 4 sin 2 ( t 2 ) d t = 0 2 π 2 sin ( t 2 ) d t = 2 [ 2 cos ( t 2 ) ] 0 2 π = 8 \begin{aligned} L &= \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \\ &= \int_0^{2\pi}\sqrt{(1-\cos t)^2 + \sin^2t} \, dt \\ &= \int_0^{2\pi} \sqrt{2(1-\cos t)} \, dt \\ &= \int_0^{2\pi} \sqrt{4 \sin^2\left(\frac{t}{2}\right)} \, dt \\ &= \int_0^{2\pi} 2\sin\left(\frac{t}{2}\right) \, dt \\ &= 2\left[-2\cos\left(\frac{t}{2}\right)\right]_0^{2\pi} \\ &= 8 \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...