Determining Sinusoid Parameters

Calculus Level 3

y ( t ) = A sin ( ω t + θ ) y ( 1 ) 2.32705644463 y ( 2 ) 2.4785144342 y ( 3 ) 3.10007384142 y(t) = A \sin(\omega \, t + \theta) \\ y(1) \approx 2.32705644463 \\ y(2) \approx -2.4785144342 \\ y(3) \approx -3.10007384142

Determine the value of A A

Hint: 0 < A < 10 0 < A < 10


The answer is 3.7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anirudh Sreekumar
Apr 14, 2019

y ( t ) = A sin ( ω t + θ ) y ( 1 ) = A sin ( ω + θ ) 2.32705644463 y ( 2 ) = A sin ( 2 ω + θ ) 2.4785144342 y ( 3 ) = A sin ( 3 ω + θ ) 3.10007384142 y ( 3 ) + y ( 1 ) = A sin ( 3 ω + θ ) + A sin ( ω + θ ) = 2 A sin ( 2 ω + θ ) cos ( ω ) sin A + sin B = 2 sin ( A + B 2 ) cos ( A B 2 ) = 2 y ( 2 ) cos ( ω ) cos ( ω ) = y ( 3 ) + y ( 1 ) 2 y ( 2 ) cos ( ω ) ( 3.10007384142 ) + ( 2.32705644463 ) 2 ( 2.4785144342 ) cos ( ω ) 0.15594369476397 sin ( ω ) ± 0.98776594599295 y ( 2 ) = A sin ( 2 ω + θ ) = A sin ( ( ω + θ ) + ω ) = A sin ( ω + θ ) cos ( ω ) + A cos ( ω + θ ) sin ( ω ) = y ( 1 ) cos ( ω ) + A cos ( ω + θ ) sin ( ω ) A cos ( ω + θ ) = y ( 2 ) y ( 1 ) cos ( ω ) sin ( ω ) = ( 2.4785144342 ) ( 2.32705644463 ) ( 0.15594369476397 ) ± 0.98776594599295 2.8765966529 A = ( A cos ( ω + θ ) ) 2 + ( A sin ( ω + θ ) ) 2 ( 2.8765966529 ) 2 + ( 2.32705644463 ) 2 3.70000000 0 A 3.7 \begin{aligned}y(t)&=A\sin (\omega t+\theta)\\ y(1)&=A\sin (\omega +\theta)\approx 2.32705644463\\ y(2)&=A\sin (2\omega +\theta)\approx -2.4785144342\\ y(3)&=A\sin (3\omega +\theta)\approx -3.10007384142\\ y(3)+y(1)&=A\sin (3\omega +\theta)+A\sin (\omega +\theta)\\ &=2A\sin (2\omega +\theta)\cdot \cos(\omega)\hspace{5mm}\color{#3D99F6}\small\sin A+\sin B=2 \sin\left(\dfrac{A+B}{2}\right)\cos\left(\dfrac{A-B}{2}\right)\\ &=2y(2)\cos (\omega)\\ \implies\cos(\omega)&=\dfrac{y(3)+y(1)}{2y(2)}\\ \cos(\omega)&\approx\dfrac{(-3.10007384142)+(2.32705644463)}{2(-2.4785144342)}\\ \cos(\omega)&\approx0.15594369476397\\ \sin(\omega)&\approx\pm0.98776594599295\\\\ y(2)&=A\sin (2\omega +\theta)\\ &=A\sin ((\omega +\theta)+\omega)\\ &= A\sin (\omega +\theta)\cos(\omega)+A\cos (\omega +\theta)\sin(\omega)\\ &=y(1)\cos(\omega)+A\cos (\omega +\theta)\sin(\omega)\\ A\cos (\omega +\theta)&=\dfrac{y(2)-y(1)\cos(\omega)}{\sin(\omega)}\\ &\approx=\dfrac{(-2.4785144342)-(2.32705644463)(0.15594369476397)}{\pm0.98776594599295}\\ &\approx\mp 2.8765966529\\\\ A&=\sqrt{(A\cos (\omega +\theta))^2+(A\sin (\omega +\theta))^2}\\ &\approx\sqrt{(\mp2.8765966529)^2+(2.32705644463)^2}\\ &\approx{3.700000000_{\cdots}}\\\\ \implies A&\approx\color{#EC7300}\boxed{\color{#333333}3.7}\end{aligned}

Max Yuen
Apr 26, 2019

One can use a curve fit program and get 3.7 as well.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...