Deterministic Factorization

Algebra Level 2

Factorize a 3 + b 3 + c 3 3 a b c a ^{3} + b^{3} + c^{3} -3abc .

( a + b + c ) ( a 2 + b 2 + c 2 + a c + a b + c b ) (a+b+c)( a ^{2} + b^{2} + c^{2} + ac + ab +cb) ( a + b + c ) ( a 2 + b 2 + c 2 3 a b c ) (a+b+c)( a ^{2} + b^{2} + c^{2} - 3abc ) ( a + b + c ) ( a + b + c a c a b c b ) (a+b+c)( a + b + c - ac - ab -cb) ( a + b + c ) ( a 2 + b 2 + c 2 a c a b c b ) (a+b+c)( a ^{2} + b^{2} + c^{2} - ac - ab -cb)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hung Woei Neoh
May 10, 2016

From Newton's Sums:

a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) ( a + b + c ) ( a b + a c + b c ) + 3 a b c a^3 + b^3+ c^3 = (a+b+c)(a^2+b^2+c^2) -(a+b+c)(ab + ac + bc) + 3abc

Therefore,

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 ) ( a + b + c ) ( a b + a c + b c ) + 3 a b c 3 a b c = ( a + b + c ) ( ( a 2 + b 2 + c 2 ) ( a b + a c + b c ) ) = ( a + b + c ) ( a 2 + b 2 + c 2 a c a b c b ) a^3 + b^3 + c^3 - 3abc\\ = (a+b+c)(a^2+b^2+c^2) - (a+b+c)(ab+ac+bc) + 3abc - 3abc\\ = (a+b+c)\left((a^2+b^2+c^2) - (ab+ac+bc)\right)\\ =\boxed{(a+b+c)(a^2+b^2+c^2 - ac - ab - cb)}

Vitor Santos
May 9, 2016

First thing to do is realize that a a a + b b b + c c c a b c a b c a b c a*a*a + b*b*b + c*c*c -abc -abc -abc then is most likely that it will help us to think on this as a determinant det a b c c a b b c a \det \begin{vmatrix} a & b & c\\ c & a & b\\ b & c & a \end{vmatrix} , and using determinant properties det a b c c a b b c a = det a + b + c b c a + b + c a b a + b + c c a \det \begin{vmatrix} a & b & c\\ c & a & b\\ b & c & a \end{vmatrix} = \det \begin{vmatrix} a+b+c & b & c\\ a+b+c & a & b\\ a+b+c & c & a \end{vmatrix} , which have a common column, take it off from the det, ( a + b + c ) det 1 b c 1 a b 1 c a (a+b+c)* \det \begin{vmatrix} 1 & b & c\\ 1 & a & b\\ 1 & c & a \end{vmatrix} , with some calculations ( a + b + c ) det 1 b c 1 a b 1 c a = ( a + b + c ) ( a 2 + b 2 + c 2 a c a b c b ) (a+b+c)* \det \begin{vmatrix} 1 & b & c\\ 1 & a & b\\ 1 & c & a \end{vmatrix} = (a+b+c)( a ^{2} + b^{2} + c^{2} - ac - ab -cb)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...