Diagonals of a Cube

Geometry Level 2

If a line makes angles α \alpha , β \beta , γ \gamma and δ \delta with the four body diagonals of a cube and the value of
cos 2 ( α ) + cos 2 ( β ) + cos 2 ( γ ) + cos 2 ( δ ) \cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) + \cos^2(\delta) can be expressed as p q \frac{p}{q} , where p p and q q are coprime integers, find the value of p + q p + q .

Clarification: Body diagonals of a cube are the diagonals which do not lie along any face of the cube.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ronak Agarwal
Sep 27, 2014

Let the unit vectors of four diagnols be :

r 1 ^ = 1 3 ( i ^ + j ^ + k ^ ) \hat { { r }_{ 1 } } =\quad \frac { 1 }{ \sqrt { 3 } } (\hat { i } +\hat { j } +\hat { k } )

r 2 ^ = 1 3 ( i ^ j ^ + k ^ ) \hat { { r }_{ 2 } } =\quad \frac { 1 }{ \sqrt { 3 } } (\hat { i } -\hat { j } +\hat { k } )

r 3 ^ = 1 3 ( i ^ + j ^ + k ^ ) \hat { { r }_{ 3 } } =\quad \frac { 1 }{ \sqrt { 3 } } (-\hat { i } +\hat { j } +\hat { k } )

r 4 ^ = 1 3 ( i ^ j ^ + k ^ ) \hat { { r }_{ 4 } } =\quad \frac { 1 }{ \sqrt { 3 } } (-\hat { i } -\hat { j } +\hat { k } )

Any arbitary unit vector can be expressed as :

a ^ = l i ^ + m j ^ + n k ^ \hat { { a } } =\quad l\hat { i } +m\hat { j } +n\hat { k }

l , m , n l,m,n are directional cosines of a a

Now a ^ . r 1 ^ = c o s ( α ) \hat { { a } } .\hat { { r }_{ 1 } } = cos(\alpha)

a ^ . r 1 ^ = c o s ( β ) \hat { { a } } .\hat { { r }_{ 1 } } = cos(\beta)

a ^ . r 1 ^ = c o s ( γ ) \hat { { a } } .\hat { { r }_{ 1 } } = cos(\gamma)

a ^ . r 1 ^ = c o s ( δ ) \hat { { a } } .\hat { { r }_{ 1 } } = cos(\delta)

Our desired thing becomes :

( a ^ . r 1 ^ ) 2 + ( a ^ . r 2 ^ ) 2 + ( a ^ . r 3 ^ ) 2 + ( a ^ . r 4 ^ ) 2 ({ \hat { { a } } .\hat { { r }_{ 1 } } ) }^{ 2 }+{ ({ \hat { { a } } .\hat { { r }_{ 2 } } ) } }^{ 2 }+{ ({ \hat { { a } } .\hat { { r }_{ 3 } } ) } }^{ 2 }{ +({ \hat { { a } } .\hat { { r }_{ 4 } } ) } }^{ 2 }

S = 1 3 ( ( l + m + n ) 2 + ( l m + n ) 2 + ( l + m + n ) 2 + ( l m + n ) 2 ) S=\frac { 1 }{ 3 } ({ (l+m+n) }^{ 2 }+{ (l-m+n) }^{ 2 }+{ (-l+m+n) }^{ 2 }+{ (-l-m+n) }^{ 2 })

S = 4 3 ( l 2 + m 2 + n 2 ) \Rightarrow S = \frac { 4 }{ 3 } ({ l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 })

Also we know that l 2 + m 2 + n 2 = 1 { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1

S = 4 3 S=\frac{4}{3}

a = 4 , b = 3 , a + b = 7 \Rightarrow a=4,b=3 ,\boxed{a+b=7}

André Meneghetti
Sep 27, 2014

If there is a line that makes angles with the 4 diagonals, it has to intercept the intersection of the diagonals, leaving the same angle to all of them. That leaves us with 4 cos 2 x 4 \cos^2x .

The diagonal of the square can be expressed by the 3 side \sqrt 3 * \text{ side} . And cos x = side 3 side 4 cos 2 x = 4 3 \cos x=\dfrac{\text{ side}}{\sqrt 3 * \text{ side}} \Rightarrow 4 \cos^2 x=\dfrac 43 .

Hence the required value is 4 + 3 = 7. 4+3=7. \square

Thats a great way to see it!

Ivan Martinez - 6 years, 8 months ago

How it will turn out if we change ' a line makes angles with....' to ' a vector makes angles with...'. Will the result be different and equal to 8/4? Cause i solved the problem like this: Let's call the cube ABCD.EFGH and vector a is the one which makes 4 angles respectively with four diagonals of the cube: AG, BH, DF, CE. And s, x are the lengths of the cube and the diagonals respectively. It goes like this:

The sum = p/q = (AG. a/ |AG|.|a|)^2 + (BH.a/ |BH|.|a|)^2 + (CE.a/|CE|.|a|)^2 + (DF.a/ |DF|.|a|)^2

= { (AG.a)^2 + 2 AG.a.CE.a + (CE.a)^2/ (a.x)}^2 + { (BH.a)^2 + 2. BH.a.DF.a + ( DF.a) ^2/ a.x} ^2

(Note: here, I add two terms 2.AG.a.CE.a and 2. BH.a.DF.a which both equal 0 because AG, CE & BH, DF are perpendicular vectors)

= (AG.a + CE.a/ a.x)^2 + ( BH.a + DF.a/ a.x)^2

( Note: Identity applied here)

= (AG + CE/ x)^2 + ( BH + CE/x)^2

= 2. ( 2s/x)^2 = 2. (2.s/√3.s)^2 = 8/3

Can you please show me why there is a difference like this between a line and a vector? great thanks to you.

Trang Mai - 8 months ago
Sanjeet Raria
Sep 26, 2014

Okay there's a whole method to find this value but here let us just be smarter as far as the value is concerned. We can think of a very special case when α \alpha , β \beta , γ \gamma & δ \delta are all equal & equal to θ \theta (say). In this case, our line will start from O & will meet the middle point or the meeting point of the diagonals of the square P 1 P 2 P 3 P 4 P_1P_2P_3P_4 . Let this point be G.

Now let 2 a 2a be the length of the sides of cube. Using Pythagoras theorem in P 1 G P 4 \triangle P_1GP_4 we find P 1 G = 2 a P_1G=√2a . Now since G O = a GO=a (why). From right triangle P 1 G O P_1GO tan θ = P 1 G G O = 2 \tan\theta=\frac{P_1G}{GO}=√2 cos 2 θ = 1 sec 2 θ = 1 1 + tan 2 θ = 1 3 \cos^2\theta=\frac{1}{\sec^2\theta}=\frac{1}{1+\tan^2\theta}=\frac{1}{3} Hence our required value reduces to 1 / 3 + 1 / 3 + 1 / 3 + 1 / 3 = 4 / 3 1/3+1/3+1/3+1/3=4/3 4 + 3 = 7 \Rightarrow 4+3=\boxed7

Antonio Fanari
Sep 28, 2014

Let A , B , C , D , G A, B, C, D, G be the vertices of the base of the cube, and ( O , x , y , z , ) (O, x, y, z,)\, be a system of cartesian coordinates in R 3 \mathbb{{R}^3} with A O , x ( B O ) , y ( D O ) , z ( x , y ) , A \equiv O,\, x \parallel {(B - O)},\, y \parallel {(D - O)},\, z \perp {(x, y)}, G \,G the point of intersection of the four diagonals, and L L the lenght of the side cof the cube ; we have:

O ( 0 , 0 , 0 ) O(0, 0, 0)

B ( L , 0 , 0 ) B(L, 0, 0)

C ( L , L , 0 ) C(L, L, 0)

D ( 0 , L , 0 ) D(0, L, 0)

G ( L 2 , L 2 , L 2 ) , G(\frac L 2, \frac L 2, \frac L 2),\, so:

G O = G B = G C = G D = 3 2 L , |GO| = |GB| = |GC| = |GD| = {\frac {\sqrt 3} 2}L,\, and the unit versors of the diagonals are: u i = G A i G C i \vec {u_i} = \frac {G - {A_i}} {|G{C_i}|}\,

u A = 1 3 ( 1 , 1 , 1 ) \vec {u_A} = {\frac 1 {\sqrt 3}}(1, 1, 1)

u B = 1 3 ( 1 , 1 , 1 ) \vec {u_B} = {\frac 1 {\sqrt 3}}(-1, 1, 1)

u C = 1 3 ( 1 , 1 , 1 ) \vec {u_C} = {\frac 1 {\sqrt 3}}(1, -1, 1)

u D = 1 3 ( 1 , 1 , 1 ) \vec {u_D} = {\frac 1 {\sqrt 3}}(-1, -1, 1)

if u l = ( c o s θ x , c o s θ y , c o s θ z ) \vec{u_l} = (cos{{\theta}_ x},\,cos{{\theta}_ y},\,cos{{\theta}_ z}) is the unit vector of a generic stright line, we have:

u l u l = u l 2 = 1 {\vec{u_l}}\cdot{\vec{u_l}} = |\vec {u_l}|^2=1

c o s ( α ) = u A u l cos(\alpha) = {\vec {u_A}}\cdot{\vec{u_l}}

c o s ( β ) = u B u l cos(\beta) = {\vec {u_B}}\cdot{\vec{u_l}}

c o s ( γ ) = u C u l cos(\gamma) = {\vec {u_C}}\cdot{\vec{u_l}}

c o s ( δ ) = u D u l cos(\delta) = {\vec {u_D}}\cdot{\vec{u_l}}

substituting, squaring, summing and simplyfing we obtain:

c o s 2 ( α ) + c o s 2 ( β ) + c o s 2 ( γ ) + c o s 2 ( δ ) = 4 3 ( c o s 2 ( θ x ) + c o s 2 ( θ y ) + c o s 2 ( θ z ) ) = {cos^2}(\alpha)+{cos^2}(\beta)+{cos^2}(\gamma)+{cos^2}(\delta)={\frac 4 3}({cos^2}({\theta}_ x)+{cos^2}({\theta}_ y)+{cos^2}({\theta}_ z)) =

4 3 \boxed {\frac 4 3}

You have posted the same solution as mine

Ronak Agarwal - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...