Diamond Sangaku - What a Gem!

Geometry Level 3

In the convex pentagon A 1 A 2 B 2 C B 1 A_1A_2B_2CB_1 ,

  • A 1 B 1 = A 1 A 2 = A 2 B 2 |\overline{A_1B_1}| = |\overline{A_1A_2}| = |\overline{A_2B_2}|
  • A 1 A 3 A 1 B 1 \overline{A_1A_3} \perp \overline{A_1B_1} and A 2 A 3 A 2 B 2 \overline{A_2A_3} \perp \overline{A_2B_2}
  • The isosceles right triangle Δ A 1 A 2 A 3 \Delta A_1A_2A_3 contains the incircle of radius R 1 R_1
  • The concave pentagon contains two incircles both of maximum radius R 2 R_2 .
  • The isosceles right triangle B 1 B 2 C B_1B_2C contains the incircle of radius R 3 R_3
  • B 1 B 2 \overline{B_1B_2} bisect both right angles A 1 B 1 C \angle A_1B_1 C and A 2 B 2 C \angle A_2B_2 C

Which of the following is larger? ( R 1 + R 2 ) (R_1 + R_2) or R 3 R_3 ?

( R 1 + R 2 ) (R_1 + R_2) R 3 R_3 Both are the same. Not enough information.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Jul 26, 2018

Let A 1 A 3 \overleftrightarrow{A_1A_3} and A 2 A 3 \overleftrightarrow{A_2A_3} intersect B 1 B 2 \overline{B_1B_2} in points P 1 P_1 and P 2 P_2 respectively.

Then A 1 A 2 A 3 , B 1 P 1 A 1 , B 2 P 2 A 2 , B 1 B 2 C \triangle A_1A_2A_3, \triangle B_1P_1A_1, \triangle B_2P_2A_2, \triangle B_1B_2C are all isosceles right triangles with incircles of radii R 1 , R 2 , R 2 , R 3 R_1, R_2, R_2, R_3 , respectively. Then by similarity, R 1 A 1 A 2 = R 2 B 1 P 1 = R 3 B 1 B 2 \frac{R_1}{A_1A_2} = \frac{R_2}{B_1P_1} = \frac{R_3}{B_1B_2}

If we let x : = A 1 A 2 = A 1 B 1 = A 2 B 2 x := A_1A_2 = A_1B_1 = A_2B_2 , then B 1 P 1 = x 2 B_1P_1 = x\sqrt{2} B 1 B 2 = x + 2 x 2 2 = x ( 1 + 2 ) B_1B_2 = x + 2x\frac{\sqrt{2}}{2} = x(1+\sqrt{2})

Therefore R 1 + R 2 = R 1 A 1 A 2 ( A 1 A 2 ) + R 2 B 1 P 1 ( B 1 P 1 ) = R 3 B 1 B 2 x + R 3 B 1 B 2 ( x 2 ) = R 3 B 1 B 2 ( x ( 1 + 2 ) ) = R 3 B 1 B 2 ( B 1 B 2 ) = R 3 \begin{aligned} R_1+R_2 &= \frac{R_1}{A_1A_2}(A_1A_2) + \frac{R_2}{B_1P_1}(B_1P_1) \\ &= \frac{R_3}{B_1B_2}\cdot x + \frac{R_3}{B_1B_2}\cdot(x\sqrt{2}) \\ &= \frac{R_3}{B_1B_2}(x(1+\sqrt{2})) \\ &= \frac{R_3}{B_1B_2}(B_1B_2) \\ &= R_3 \end{aligned}

That is, R 1 + R 2 R_1+R_2 and R 3 R_3 have the same value \boxed{\text{the same value}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...