Dice games, part 3

Calculus Level 4

Let P n P_n be the probability that after rolling n n fair n n -sided dice, one of each natural number 1 1 through n n is shown.

Let Y = lim n ln ( P n n ) + n \displaystyle Y = \lim_{n \to \infty} \ln\left(\frac{P_n}{\sqrt{n}}\right)+n .

Compute Y × 1 0 9 \lfloor Y \times 10^9\rfloor .

924405582 911813017 948252096 856213965 939515816 878649514 918938533 947935763

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kerry Soderdahl
Apr 21, 2016

P n = n ! n n P_n=\frac{n!}{n^n}

From Stirling's formula:

n ! 2 π n n n e n n! \sim \sqrt{2\pi n} \cdot \frac{n^n}{e^n} n ! n n 2 π n e n \frac{n!}{n^n} \sim \sqrt{2\pi n} \cdot e^{-n} Y = lim n ln ( n ! n n n ) + n = lim n ln ( 2 π n n e n ) + n Y = \lim_{n\to \infty} \; \ln\left(\frac{\frac{n!}{n^n}}{\sqrt{n}}\right) + n = \lim_{n\to \infty} \; \ln\left(\frac{\sqrt{2\pi n}}{\sqrt{n}}\cdot e^{-n} \right) + n

= lim n ln ( 2 π ) + ln ( e n ) + n = lim n 1 2 ln ( 2 π ) n + n = 1 2 ln ( 2 π ) = \lim_{n \to \infty} \; \ln(\sqrt{2\pi}) + \ln (e^{-n}) + n = \lim_{n \to \infty} \; \frac{1}{2}\ln(2\pi) - n + n = \frac{1}{2}\ln(2\pi)

1 2 ln ( 2 π ) × 1 0 9 = 918938533 \left\lfloor \frac{1}{2}\ln(2\pi) \times 10^9\right\rfloor = \boxed{918938533}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...