Did anybody order Digamma?

Calculus Level 2

n = 1 ( ψ ( 1 2 + n ) ψ ( 1 2 n ) ) = ? \sum_{n=1}^\infty \left(\psi \left(\frac 12 + n\right) - \psi \left(\frac 12 - n\right) \right) = \ ?

Notation: ψ ( ) \psi (\cdot) denotes the digamma function .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 29, 2020

S = n = 1 ( ψ ( 1 2 + n ) ψ ( 1 2 n ) ) = n = 1 ( ψ ( 1 2 + n ) ψ ( 1 ( 1 2 + n ) ) ) Note that ψ ( 1 z ) ψ ( z ) = π cot ( π z ) = n = 1 π cot ( π 2 + n π ) = n = 1 π tan ( n π ) = 0 \begin{aligned} S & = \sum_{n=1}^\infty \left(\psi \left(\frac 12 + n\right) - \psi \left(\frac 12 - n\right) \right) \\ & = \sum_{n=1}^\infty \left(\psi \left(\frac 12 + n\right) - \psi \left(1 - \left(\frac 12 + n\right)\right) \right) & \small \blue{\text{Note that }\psi (1-z) - \psi (z) = \pi \cot (\pi z)} \\ & = \sum_{n=1}^\infty - \pi \cot \left(\frac \pi 2+n \pi \right) \\ & = \sum_{n=1}^\infty \pi \tan (n \pi) \\ & = \boxed 0 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...