Can you remove the log?

Algebra Level 4

{ ( 3 x ) log 3 = ( 4 y ) log 4 4 log x = 3 log y \large\begin{cases} (3x)^{\log 3} = (4y)^{\log 4}\\ 4^{\log x}= 3^{\log y}\end{cases}

Given the system of equations above, find the value of 1 x + 1 y \dfrac{1}{x}+\dfrac{1}{y} .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Discussions for this problem are now closed

Arturo Presa
Jan 18, 2015

Taking l o g log of both side of each equation and applying the properties log c ( a r ) = r l o g c ( a ) \log _{ c }(a^{r})= r\ log _{ c }(a) and log c ( a b ) = log c ( a ) + log c ( b ) \log _{ c }(ab)=\log _{ c }(a)+\log _{ c }(b) we get log 3 ( log 3 + log x ) = log 4 ( log 4 + log y ) \log3 (\log 3+\log x)=\log 4 (\log 4 +\log y) and log 4 log x = log 3 log y \log4 \log x=\log 3 \log y Making a = log 3 , b = log 4 , u = log x , v = log y a=\log 3, b=\log 4, u=\log x, v=\log y we can obtain the following system of linear equations for u u and v v . a ( a + u ) = b ( b + v ) b u = a v a(a+u)=b(b+v)\\ bu=av The only solution of the system is u = a u=-a and v = b v=-b . Thus log x = log 3 = log 1 3 \log x =-\log 3 =\log \frac{1}{3} and log y = log 4 = log 1 4 \log y =-\log 4 =\log \frac{1}{4} . Hence x = 1 3 x=\frac{1}{3} and y = 1 4 y=\frac{1}{4} and therefore 1 x + 1 y = 7 \frac{1}{x}+\frac{1}{y}=7

{ ( 3 x ) log 3 = ( 4 y ) l o g 4 4 log x = 3 log y \begin{cases} (3x)^{\log{3}} = (4y)^{log{4}} \\ 4^{\log{x}} = 3^{\log{y}} \end{cases}

{ log 3 log 3 + log 3 log x = log 4 log 4 + log 4 log y log x log 4 = log y log 3 \Rightarrow \begin{cases} \log{3}\log{3} + \log{3}\log{x} = \log{4}\log{4} + \log{4}\log{y}\\ \log{x}\log{4} = \log{y}\log{3} \end{cases}

{ ( log 3 ) 2 + log 3 log x = ( log 4 ) 2 + log 4 log y log y = log 4 log x log 3 \Rightarrow \begin{cases} (\log{3})^2 + \log{3}\log{x} = (\log{4})^2 + \log{4}\log{y}\\ \log{y} = \dfrac {\log{4}\log{x}}{\log{3}} \end{cases}

( log 3 ) 2 + log 3 log x = ( log 4 ) 2 + ( log 4 ) 2 log x log 3 \Rightarrow (\log{3})^2 + \log{3}\log{x} = (\log{4})^2 + \dfrac {(\log{4})^2\log{x}}{\log{3}}

( log 3 ( log 4 ) 2 log 3 ) log x = ( log 4 ) 2 ( log 3 ) 2 \Rightarrow \left(\log{3} - \dfrac {(\log{4})^2}{\log{3}} \right) \log{x} = (\log{4})^2 - (\log{3})^2

( ( log 3 ) 2 ( log 4 ) 2 log 3 ) log x = ( log 4 ) 2 ( log 3 ) 2 \Rightarrow \left(\dfrac {(\log{3})^2 - (\log{4})^2}{\log{3}} \right) \log{x} = (\log{4})^2 - (\log{3})^2

log x = log 3 x = 1 3 \Rightarrow \log{x} = -\log{3}\quad \Rightarrow x = \frac {1}{3}

Substituting x = 1 3 \space x = \frac {1}{3}\space in ( 3 x ) log 3 = ( 4 y ) l o g 4 \space (3x)^{\log{3}} = (4y)^{log{4}} :

1 = ( 4 y ) l o g 4 4 y = 1 y = 1 4 \Rightarrow 1 = (4y)^{log{4}} \quad \Rightarrow 4y = 1 \quad \Rightarrow y = \frac {1}{4}

Therefore, 1 x + 1 y = 3 + 4 = 7 \space \dfrac {1}{x} + \dfrac {1}{y} = 3 + 4 = \boxed {7}

Easy as pie ! Nice solution sir . :D

Keshav Tiwari - 6 years, 5 months ago

I understood logxlog4=logylog3,

But I could not understand how you had Log3log3+log3logx=1.

Ceesay Muhammed - 6 years, 5 months ago

log ( 3 x ) log 3 = log ( 3 log 3 x log 3 ) = log 3 log 3 + log x log 3 = log 3 log 3 + log 3 log x \log{(3x)^{\log{3}}} = \log{(3^{\log{3}}x^{\log{3}})} = \log{3^{\log{3}}}+ \log{x^{\log{3}}} = \log{3}\log{3}+\log{3}\log{x}

Chew-Seong Cheong - 6 years, 5 months ago
Gautam Sharma
Jan 2, 2015

just observe the equality and you will see it will occur when both sides are 1 in first equation and check that they satisfy eq 2 So x=1/3 and y=1/4

But there is always a possibility that there could have been more solutions.

Aneesh Kundu - 6 years, 5 months ago

Yeah but this is not a multiple correct question thats why. and it is a previous year IIT question only diff is there was 2 instead of 4.(acc to my memory)

Gautam Sharma - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...