⎩ ⎨ ⎧ ( 3 x ) lo g 3 = ( 4 y ) lo g 4 4 lo g x = 3 lo g y
Given the system of equations above, find the value of x 1 + y 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
{ ( 3 x ) lo g 3 = ( 4 y ) l o g 4 4 lo g x = 3 lo g y
⇒ { lo g 3 lo g 3 + lo g 3 lo g x = lo g 4 lo g 4 + lo g 4 lo g y lo g x lo g 4 = lo g y lo g 3
⇒ ⎩ ⎨ ⎧ ( lo g 3 ) 2 + lo g 3 lo g x = ( lo g 4 ) 2 + lo g 4 lo g y lo g y = lo g 3 lo g 4 lo g x
⇒ ( lo g 3 ) 2 + lo g 3 lo g x = ( lo g 4 ) 2 + lo g 3 ( lo g 4 ) 2 lo g x
⇒ ( lo g 3 − lo g 3 ( lo g 4 ) 2 ) lo g x = ( lo g 4 ) 2 − ( lo g 3 ) 2
⇒ ( lo g 3 ( lo g 3 ) 2 − ( lo g 4 ) 2 ) lo g x = ( lo g 4 ) 2 − ( lo g 3 ) 2
⇒ lo g x = − lo g 3 ⇒ x = 3 1
Substituting x = 3 1 in ( 3 x ) lo g 3 = ( 4 y ) l o g 4 :
⇒ 1 = ( 4 y ) l o g 4 ⇒ 4 y = 1 ⇒ y = 4 1
Therefore, x 1 + y 1 = 3 + 4 = 7
Easy as pie ! Nice solution sir . :D
I understood logxlog4=logylog3,
But I could not understand how you had Log3log3+log3logx=1.
lo g ( 3 x ) lo g 3 = lo g ( 3 lo g 3 x lo g 3 ) = lo g 3 lo g 3 + lo g x lo g 3 = lo g 3 lo g 3 + lo g 3 lo g x
just observe the equality and you will see it will occur when both sides are 1 in first equation and check that they satisfy eq 2 So x=1/3 and y=1/4
But there is always a possibility that there could have been more solutions.
Yeah but this is not a multiple correct question thats why. and it is a previous year IIT question only diff is there was 2 instead of 4.(acc to my memory)
Problem Loading...
Note Loading...
Set Loading...
Taking l o g of both side of each equation and applying the properties lo g c ( a r ) = r l o g c ( a ) and lo g c ( a b ) = lo g c ( a ) + lo g c ( b ) we get lo g 3 ( lo g 3 + lo g x ) = lo g 4 ( lo g 4 + lo g y ) and lo g 4 lo g x = lo g 3 lo g y Making a = lo g 3 , b = lo g 4 , u = lo g x , v = lo g y we can obtain the following system of linear equations for u and v . a ( a + u ) = b ( b + v ) b u = a v The only solution of the system is u = − a and v = − b . Thus lo g x = − lo g 3 = lo g 3 1 and lo g y = − lo g 4 = lo g 4 1 . Hence x = 3 1 and y = 4 1 and therefore x 1 + y 1 = 7