( x − y ) 2 + 2 y 2 = 4 3
Find all ordered pairs of integers ( x , y ) which satisfy the equation above.
Enter your answer as the number of ordered pairs possible.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Very nice solution!
No need to expand the LHS, just limit the possibilities by using the properties of squares and the finite number of squares less than 43: 0 < ( x − y ) 2 , 2 y 2 < 4 3 ( n o e q u a l i t y a s x = y ) and the squares available are 1,4,9 and 16. Now let y 2 = 1 , 4 , 9 , 1 6 such that: ( x − y ) 2 = 4 3 − 2 y 2 = 4 1 , 3 5 , 2 5 , 1 1 ⟹ ( x − y ) 2 = 2 5 a n d y 2 = 9 ∴ ( x , y ) = ( − 2 , 3 ) , ( 8 , 3 ) , ( − 8 , − 2 ) , ( 2 , − 3 )
Let z = x − y :
( x − y ) 2 + 2 y 2 = 4 3
z 2 + 2 y 2 = 4 3
z = ± 4 3 − 2 y 2 ⟹ 4 3 − 2 y 2 ≥ 0
y ≤ 4 < 2 4 3 ≈ 4 . 6
Checking values of y between 1 and 4 that make 4 3 − 2 y 2 a square number:
4 3 − 2 ( 1 ) 2 = 4 1
4 3 − 2 ( 2 ) 2 = 3 5
4 3 − 2 ( 3 ) 2 = 2 5 = 5 2
4 3 − 2 ( 4 2 ) = 1 1
Therefore only y = ± 3 yields a square number, giving us the solutions z = ± 5 ⟹ x = { ± 2 , ± 8 } . This yields four possible solutions:
( 8 , 3 ) , ( − 2 , 3 ) , ( 2 , − 3 ) , ( − 8 , − 3 )
Therefore our answer must be 4 .
Nice solution friend easy to understand
The only possible RHS can be (5)^2 + 2(3)^2 Hence ordered pairs can be represented by the set {(8,3),(-2,3),(2,-3),(-8,-3)}
Problem Loading...
Note Loading...
Set Loading...
( x − y ) 2 + 2 y 2 = 4 3
⟹ x 2 − 2 x y + 3 y 2 − 4 3 = 0
Let's consider this equation as a quadratic polynomial in x.
For roots of this polynomial to be integral, discriminant should be non-negative.
Discriminant of this polynomial = ( − 2 y ) 2 − 4 ( 1 ) ( 3 y 2 − 4 3 ) ≥ 0
⟹ 5 > y > − 5
Now we have bounded the possible values of y ie, possible values for y = 4 , 3 , 2 , 1 , 0 , − 1 , − 2 , − 3 , − 4
Also, by a little modular arithmetic, we can show that y is odd.
Now remaining possible values of y = 3 , 1 , − 1 , − 3
Out of these possible values, only y = 3 and y = -3 give integral values of x.
y = 3 gives two distinct integral values of x.
Similarly y = -3 also give two distinct integral values of x.
Therefore total number of possible ordered pairs = 4