Die Hard #01

Find the last three digits of 7 9999 7^{9999} .


The answer is 143.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Saurav Pal
Feb 25, 2015

7 9999 x ( m o d 1000 ) B y E u l e r s T h e o r e m , a ϕ ( m ) 1 ( m o d m ) . ϕ ( m ) = m ( 1 1 a ) ( 1 1 b ) . . . . . m = a p . b q . c r . . . . . . . , w h e r e a , b , c , . . . a r e p r i m e s . S o , ϕ ( 1000 ) = 1000 ( 1 1 2 ) ( 1 1 5 ) = 400. 7 400 1 ( m o d 1000 ) 7 10000 1 ( m o d 1000 ) . 7 10000 7 x ( m o d 1000 ) 7 x 1 ( m o d 1000 ) . x = 143. { 7 }^{ 9999 }\quad \equiv \quad x\quad (mod\quad 1000)\\ By\quad Euler's\quad Theorem,\quad { a }^{ \phi (m) }\quad \equiv \quad 1\quad (mod\quad m).\quad \\ \phi (m)\quad =\quad m(1-\cfrac { 1 }{ a } )(1-\cfrac { 1 }{ b } ).\quad .\quad .\quad .\quad .\quad \quad \quad \quad \quad \\ m\quad =\quad { a }^{ p }.{ b }^{ q }{ .c }^{ r }.......\quad ,\quad where\quad a,b,c,...\quad are\quad primes.\quad \quad \\ So,\quad \phi (1000)\quad =\quad 1000(1-\cfrac { 1 }{ 2 } )(1-\cfrac { 1 }{ 5 } )\quad =\quad 400.\quad \\ { 7 }^{ 400 }\quad \equiv \quad 1\quad (mod\quad 1000)\quad \Longrightarrow \quad { 7 }^{ 10000 }\quad \equiv \quad 1\quad (mod\quad 1000).\quad \\ { 7 }^{ 10000 }\quad \equiv \quad 7x\quad (mod\quad 1000)\quad \Longrightarrow \quad 7x\quad \equiv \quad 1\quad (mod\quad 1000).\quad \\ \Longrightarrow \quad x\quad =\quad 143.\quad \quad \quad

I understood uptill the step 7^10000 congruent 1 (mod 1000). But I couldn't get 7^10000 congruent 7x (mod 1000) and further. Can you please explain if possible!!!!

Ankit Kumar Jain - 6 years, 1 month ago

Nice solution . Can you suggest some source from where I can study Modular Arithmetic in detail ?

A Former Brilliant Member - 6 years, 3 months ago

Log in to reply

Brilliant.org!

Swapnil Das - 6 years, 2 months ago

how you find value of x?

Dev Sharma - 5 years, 12 months ago
Abhishek Garg
Mar 8, 2015

\text{It can be done binomially too}\implies 7^{9999}=343.7^{9996}=343[2400+1]^{249}\ =343[\dbinom{249}{0} 2400^{249}+\dbinom{249}{1} 2400^{248}\cdots \cdots \dbinom{249}{248} 2400+\dbinom{249}{249} 1]\ =343[2400^{249}+249.2400^{248}+\cdots \cdots \cdots +249.2400+1]\ \text{only last 2 terms are sufficient for last 3 digits}\ \implies 343[\cdots \cdots \cdots +597600+1]\ \implies 343.597600+343\ \text{last 3 digits are }\implies [.....800+343]=143

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...