Die Hard Fan Of This Sequence!

Calculus Level 3

Let { a n } n N { \left\{ { a }_{ n } \right\} }_{ n \in \mathbb N } be a sequence of positive numbers converging to a a and assume that b b is a positive number such that b < a b < a .

Will the series converge or diverge?

n = 1 n ! b n ( b + a 1 ) ( b + a 2 ) ( b + a n ) \large\ \displaystyle \sum _{ n=1 }^{ \infty }{ \frac { n!{ b }^{ n } }{ \left( b + { a }_{ 1 } \right) \left( b + { a }_{ 2 } \right) \cdot \cdot \cdot \left( b + { a }_{ n } \right) } }

It converges It diverges

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Leonel Castillo
May 27, 2018

n = 1 n ! b n ( b + a 1 ) . . . ( b + a n ) = n = 1 n ! ( 1 + a 1 b ) . . . ( 1 + a n b ) \sum_{n=1}^{\infty} \frac{n! b^n}{(b + a_1)...(b + a_n)} = \sum_{n=1}^{\infty} \frac{n!}{(1 + \frac{a_1}{b})...(1 + \frac{a_n}{b})} Let's define the sequence c n = a n b a b > 1 c_n = \frac{a_n}{b} \to \frac{a}{b} > 1 to rewrite the series as n = 1 n ! ( 1 + c 1 ) . . . ( 1 + c n ) \sum_{n=1}^{\infty} \frac{n!}{(1 + c_1)...(1 + c_n)} . Applying the ratio test, n + 1 1 + c n + 1 \left| \frac{n+1}{1 + c_{n+1}}\right| \to \infty because the numerator goes to infinity while the denominator converges to a finite positive number. Thus the series diverges.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...