Diffcal

Calculus Level 3

Let g ( x ) = f ( x ) + f ( 1 x ) g(x)=f(x)+f(1-x) and f ( x ) > 0 f''(x)>0 , where x x belongs to ( 0 , 1 ) (0,1) . Then g ( x ) g(x) is

increasing on ( 1 2 , 1 ) \left(\frac{1}{2},1\right) and decreasing on ( 0 , 1 2 ) \left(0,\frac{1}{2}\right) increasing on ( 0 , 1 ) (0,1) decreasing on ( 0 , 1 ) (0,1)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joseph Newton
May 11, 2018

Differentiating using the chain rule: g ( x ) = f ( x ) f ( 1 x ) g'(x)=f'(x)-f'(1-x) When f ( x ) > 0 f''(x)>0 , f ( x ) f'(x) is increasing. This means that if a > b a>b , then f ( a ) > f ( b ) f'(a)>f'(b) for a , b a,b on the interval ( 0 , 1 ) (0,1) .

Now consider a value x on the interval ( 0 , 1 ) (0,1) (meaning 1-x is also in this interval): when x > 1 2 : when x < 1 2 : x > 1 x x < 1 x f ( x ) > f ( 1 x ) f ( x ) < f ( 1 x ) f ( x ) f ( 1 x ) > 0 f ( x ) f ( 1 x ) < 0 g ( x ) > 0 g ( x ) < 0 So g ( x ) is increasing on ( 1 2 , 1 ) So g ( x ) is decreasing on ( 0 , 1 2 ) \begin{aligned}\text{when }x&>\frac{1}{2}:&\text{when }x&<\frac{1}{2}:\\ x&>1-x&x&<1-x\\ f'(x)&>f'(1-x)&f'(x)&<f'(1-x)\\ f'(x)-f'(1-x)&>0&f'(x)-f'(1-x)&<0\\ g'(x)&>0&g'(x)&<0\\ \text{So }g(x)&\text{ is increasing on }\left(\frac{1}{2},1\right)&\text{So }g(x)&\text{ is decreasing on }\left(0,\frac{1}{2}\right)\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...