Difference of Areas of an ellipse and a curve

Level pending

When the curve f ( x ) = 4 5 ( x 1 x 2 ) f(x) = \dfrac{4}{5}\left(\sqrt{x} - \sqrt{1 - x^2}\right) is reflected about the line y = 8 5 x 4 5 y = \dfrac{8}{5}x - \dfrac{4}{5} a closed curve is formed.

Find the area A 1 A_{1} of the closed curve formed above.

Find the area A 2 A_{2} of the ellipse 36 ( x 1 2 ) 2 + 25 y 2 = 25 36(x - \dfrac{1}{2})^2 + 25y^2 = 25 .

Find the difference A 2 A 1 A_{2} - A_{1} to four decimal places.

:


The answer is 2.3508.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 20, 2018

To find ( x 0 , y 0 ) (x_{0},y_{0}) :

4 5 ( x 1 x 2 ) = 4 5 ( 2 x 1 ) x 2 x 1 x 2 + 1 x 2 = 4 x 2 4 x + 1 5 x 5 x 2 = 2 x 1 x 2 \dfrac{4}{5}(\sqrt{x} - \sqrt{1 - x^2}) = \dfrac{4}{5}(2x - 1) \implies x - 2\sqrt{x}\sqrt{1 - x^2} + 1 - x^2 = 4x^2 - 4x + 1 \implies 5x - 5x^2 = 2\sqrt{x}\sqrt{1 - x^2}

25 x 2 ( 1 2 x + x 2 ) = 4 x 4 x 3 25 x 4 50 x 3 + 25 x 2 = 4 x 4 x 3 x ( 25 x 3 46 x 2 + 25 x 4 ) = 0 \implies 25x^2(1 - 2x + x^2) = 4x - 4x^3 \implies 25x^4 - 50x^3 + 25x^2 = 4x - 4x^3 \implies x(25x^3 - 46x^2 + 25x - 4) = 0 \implies

x ( x 1 ) ( 25 x 2 21 x + 4 ) = 0 x = 0 , x = 1 , x = 21 ± 41 50 x(x - 1)(25x^2 - 21x + 4) = 0 \implies x = 0, x = 1, x = \dfrac{21 \pm \sqrt{41}}{50} .

From the graph above two points of intersection are ( 1 , 4 5 ) (1,\dfrac{4}{5}) and ( 0 , 4 5 ) (0,\dfrac{-4}{5}) . Since there are only three points of intersection \implies only one of the values of x = 21 ± 41 50 x = \dfrac{21 \pm \sqrt{41}}{50} are valid.

Choosing x 0 = 21 41 50 y ( x 0 ) = f ( x 0 ) = 4 125 ( 4 + 41 ) \boxed{x_{0} = \dfrac{21 - \sqrt{41}}{50}} \implies y(x_{0}) = f(x_{0}) = \dfrac{-4}{125}(4 + \sqrt{41}) .

A 1 = 2 x 0 1 ( y f ( x ) ) d x = 8 5 x 0 1 ( 1 x 2 x + ( 2 x 1 ) ) d x A^{*}_{1} = 2\int_{x_{0}}^{1} (y - f(x)) dx = \dfrac{8}{5}\int_{x_{0}}^{1} (\sqrt{1 - x^2} - \sqrt{x} + (2x - 1))dx .

Let x = sin ( θ ) d x = cos ( θ ) x = \sin(\theta) \implies dx = \cos(\theta) A 1 = 8 5 ( π 4 1 2 arcsin ( x 0 ) 1 2 x 0 1 x 0 2 2 3 + 2 3 x 0 3 2 x 0 2 + x 0 ) \implies A^{*}_{1} = \dfrac{8}{5}(\dfrac{\pi}{4} - \dfrac{1}{2}\arcsin(x_{0}) - \dfrac{1}{2}x_{0}\sqrt{1 - x_{0}^2} - \dfrac{2}{3} + \dfrac{2}{3}{x_{0}}^{\dfrac{3}{2}} - {x_{0}}^2 + x_{0})

In a similar fashion:

A 2 = 2 0 x 0 ( f ( x ) y ) d x = 8 5 0 x 0 ( 1 x 2 + x 2 x + 1 ) d x = A^{*}_{2} = 2\int_{0}^{x_{0}} (f(x) - y) dx = \dfrac{8}{5}\int_{0}^{x_{0}} (-\sqrt{1 - x^2} + \sqrt{x} - 2x + 1) dx =

8 5 ( 1 2 arcsin ( x 0 ) 1 2 x 0 1 x 0 2 + 2 3 x 0 3 2 x 0 2 + x 0 ) . \dfrac{8}{5}(\dfrac{-1}{2}\arcsin(x_{0}) - \dfrac{1}{2}x_{0}\sqrt{1 - {x_{0}}^2} + \dfrac{2}{3}{x_{0}}^{\dfrac{3}{2}} - {x_{0}}^2 + x_{0}).

The desired area A 1 = A 1 + A 2 = 8 5 ( π 4 arcsin ( x 0 ) x 0 1 x 0 2 2 3 + 4 3 x 0 3 2 2 x 0 2 + 2 x 0 ) . 2671939 A_{1} = A^{*}_{1} + A^{*}_{2} = \dfrac{8}{5}(\dfrac{\pi}{4} - \arcsin(x_{0}) - x_{0}\sqrt{1 - x_{0}^2} - \dfrac{2}{3} + \dfrac{4}{3}{x_{0}}^{\dfrac{3}{2}} - 2{x_{0}}^2 + 2x_{0}) \approx \boxed{.2671939}

The ellipse 36 ( x 1 2 ) 2 + 25 y 2 = 25 y = 1 5 25 36 ( x 1 2 ) 2 36(x - \dfrac{1}{2})^2 + 25y^2 = 25 \implies y = \dfrac{1}{5}\sqrt{25 - 36(x - \dfrac{1}{2})^2} , where 1 3 x 4 3 \dfrac{-1}{3} \leq x \leq \dfrac{4}{3} \implies A 2 = 2 5 1 3 4 3 25 36 ( x 1 2 ) 2 A_{2} = \dfrac{2}{5}\int_{\dfrac{-1}{3}}^{\dfrac{4}{3}} \sqrt{25 - 36(x - \dfrac{1}{2})^2} .

Letting 6 ( x 1 2 ) = 5 sin ( θ ) A 2 = 5 6 π 2 π 2 ( 1 + cos ( 2 θ ) ) = 5 6 ( θ + 1 2 sin ( 2 θ ) ) π 2 π 2 = 5 π 6 6(x - \dfrac{1}{2}) = 5\sin(\theta) \implies A_{2} = \dfrac{5}{6}\int_{\dfrac{-\pi}{2}}^{\dfrac{\pi}{2}} (1 + \cos(2\theta)) = \dfrac{5}{6} (\theta + \dfrac{1}{2}\sin(2\theta))|_{\dfrac{-\pi}{2}}^{\dfrac{\pi}{2}} = \boxed{\dfrac{5\pi}{6}} \implies

A 2 A 1 2.3508 A_{2} - A_{1} \approx \boxed{2.3508}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...