Different type of sum

Calculus Level 3

Let { a n } n = 1 n = \{a_n\}_{n=1}^{n=\infty} be a sequence that satisfy the recursive relation, a n + 1 = a n 2 2 a_{n+1} = a_n ^2 - 2 with a 1 = 3 a_1 = 3 .

If the series

j = 1 1 k = 1 j a k = 1 3 + 1 3 7 + 1 3 7 47 + 1 3 7 47 2207 + \large\ \displaystyle \sum_{j=1}^\infty \dfrac1{\displaystyle \prod_{k=1}^j a_k } = \frac { 1 }{ 3 } + \frac { 1 }{ 3\cdot 7 } + \frac { 1 }{ 3\cdot 7\cdot 47 } + \frac { 1 }{ 3\cdot 7\cdot 47\cdot 2207 } + \cdots

can be expressed as a b c \frac { a - \sqrt { b } }{ c } , where a , b , c a,b,c are positive integers with b b square-free, submit your answer as a + c b a+c-b .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 21, 2018

What we are being asked to evaluate is the sum S = N = 0 ( m = 0 N a m ) 1 S \; = \; \sum_{N=0}^\infty \left(\prod_{m=0}^Na_m\right)^{-1} where a 0 = 3 , a 1 = 7 , a 2 = 47 , a 3 = 2207 a_0=3\,,\,a_1=7\,,\,a_2=47\,,\,a_3=2207 are the first few terms of the sequence ( a n ) n 0 (a_n)_{n \ge 0} defined by the recurrence relation a n + 1 2 = a n 2 2 , n 0 , a 0 = 3 a_{n+1}^2 \; = \; a_n^2 - 2 \;,\; n \ge 0 \;, \hspace{2cm} a_0 = 3 It is easy to show by induction that a n = ( 3 + 5 2 ) 2 n + ( 3 5 2 ) 2 n n 0 a_n \; = \; \left(\tfrac{3+\sqrt{5}}{2}\right)^{2^n} + \left(\tfrac{3-\sqrt{5}}{2}\right)^{2^n} \hspace{2cm} n \ge 0 and further 5 m = 0 n a m = ( 3 + 5 2 ) 2 n + 1 ( 3 5 2 ) 2 n + 1 n 0 \sqrt{5}\prod_{m=0}^n a_m \; = \; \left(\tfrac{3+\sqrt{5}}{2}\right)^{2^{n+1}} - \left(\tfrac{3-\sqrt{5}}{2}\right)^{2^{n+1}} \hspace{2cm} n \ge 0 Thus we deduce that S = 5 n = 0 ( X 2 n + 1 X 2 n + 1 ) 1 = 5 n = 1 ( X 2 n X 2 n ) 1 = 5 [ n = 0 ( X 2 n X 2 n ) 1 1 X X 1 ] S \; = \; \sqrt{5}\sum_{n=0}^\infty \left(X^{2^{n+1}} - X^{-2^{n+1}}\right)^{-1} \; = \; \sqrt{5}\sum_{n=1}^\infty \left(X^{2^n} - X^{-2^n}\right)^{-1} \; = \; \sqrt{5}\left[\sum_{n=0}^\infty \left(X^{2^n} - X^{-2^n}\right)^{-1} - \frac{1}{X - X^{-1}}\right] where X = 3 + 5 2 X = \tfrac{3+\sqrt{5}}{2} . Now since n = 0 ( X 2 n X 2 n ) 1 = n = 0 X 2 n ( 1 X 2 n + 1 ) 1 = n = 0 X 2 n m = 0 X m 2 n + 1 = n , m = 0 X ( 2 m + 1 ) 2 n = n = 1 X n = X 1 1 X 1 = 1 X 1 \begin{aligned} \sum_{n=0}^\infty \left(X^{2^n} - X^{-2^n}\right)^{-1} & = \; \sum_{n=0}^\infty X^{-2^n}\big(1 - X^{-2^{n+1}}\big)^{-1} \; = \; \sum_{n=0}^\infty X^{-2^n}\sum_{m=0}^\infty X^{-m 2^{n+1}} \; = \; \sum_{n,m =0}^\infty X^{-(2m+1)2^n} \\ & = \; \sum_{n=1}^\infty X^{-n} \; = \; \frac{X^{-1}}{1 - X^{-1}} \; = \; \frac{1}{X-1} \end{aligned} and hence S = 5 [ 1 X 1 X X 2 1 ] = 5 X 2 1 = X 1 = 1 2 ( 3 5 ) S \; = \; \sqrt{5}\left[\frac{1}{X-1} - \frac{X}{X^2-1}\right] \; =\; \frac{\sqrt{5}}{X^2-1} \; = \; X^{-1} \; = \; \tfrac12(3 - \sqrt{5}) making the answer 2 + 3 5 = 0 2 + 3 - 5 = \boxed{0} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...