Differentiable Limits!!

Calculus Level 2

lim x 1 ( x 1 ) ( 2 x 3 ) 2 x 2 + x 3 = ? \displaystyle\lim_{x\to 1}\dfrac{(\sqrt{x}-1)(2x-3)}{2x^2+x-3} = ?


The answer is -0.1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Apr 29, 2015

lim x 1 ( x 1 ) ( x + 1 ) ( 2 x 3 ) ( x 1 ) ( 2 x + 3 ) ( x + 1 ) \displaystyle \lim_{x\to 1} \frac{(\sqrt{x}-1)(\sqrt{x}+1)(2x-3)}{(x-1)(2x+3)(\sqrt{x}+1)}

using property of ( a b ) ( a + b ) = a 2 b 2 (a-b)(a+b)=a^2-b^2 in the numerator.

lim x 1 2 x 3 ( x + 1 ) ( 2 x + 3 ) \displaystyle \lim_{x\to 1} \frac{2x-3}{(\sqrt{x}+1)(2x+3)}

apply the limits

1 10 = 0.1 \frac{-1}{10}=-0.1

Nice and neat!

User 123 - 6 years, 1 month ago

Very elegantly done!

Aran Pasupathy - 6 years ago

lim x 1 ( x 1 ) ( 2 x 3 ) ( x 1 ) ( 2 x + 3 ) = lim x 1 2 x 3 ( x + 1 ) ( 2 x + 3 ) = 2 3 ( 1 + 1 ) ( 2 + 3 ) = . 1 \lim_{x\to 1} \dfrac{(\sqrt{x}-1)(2x-3)}{(x-1)(2x+3)} = \lim_{x\to 1} \dfrac{2x-3}{(\sqrt x+1)(2x+3)} = \dfrac{2-3}{(1+1)(2+3)}\\=\boxed{\large -.1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...