Calculus problem No.1

Calculus Level 3

Solve the differential equation below:

y ( x ) y ( x ) x = x \large y''(x) - \frac{y'(x)}{x} = x

Notations: ζ 1 \zeta_1 and ζ 2 \zeta_2 denote constants.

y = x 4 3 + ζ 1 x 2 ζ 2 y = \frac{x^4}{3} + \zeta _{1}x^{2} - \zeta _{2} y = x 3 6 ζ 1 x 2 + ζ 2 x y = \frac{x^3}{6} - \zeta _{1}x^{2} + \zeta _{2}x y = x 3 3 + ζ 1 x 2 + ζ 2 y = \frac{x^3}{3} + \zeta _{1}x^{2} + \zeta _{2} y = x 3 3 + ζ 1 x + ζ 2 y = \frac{x^3}{3} + \zeta _{1}x + \zeta _{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let y ( x ) = z y'(x) =z

Then the given equation reduces to :

z ( x ) z x = x z'(x) -\dfrac zx=x

Integrating factor of this equation is

e d x x = 1 x e^{-\displaystyle \int \frac{dx}{x}}=\dfrac 1x

Solution to the equation is

z = y ( x ) = x 2 + C 1 x z=y'(x) =x^2+C_1x

y = x 3 3 + C 1 2 x 2 + ζ 2 \implies y=\dfrac {x^3}{3}+\dfrac {C_1}{2}x^2+\zeta_2

= 1 3 x 3 + ζ 1 x 2 + ζ 2 =\boxed {\dfrac 13 x^3+\zeta_1x^2+\zeta_2} .

y ( x ) y ( x ) x = x d 2 y d x 2 1 x d y d x = x Let d y d x = v ( x ) d 2 y d x 2 = d v ( x ) d x d v d x v x = x Multiply both sides by μ ( x ) = e 1 / x d x = 1 x 1 x d v d x v x 2 = 1 d d x ( v ( x ) x ) = 1 d d x ( v ( x ) x ) d x = 1 d x v ( x ) x = x + c 1 v ( x ) = x 2 + c 1 x d y d x = x 2 + c 1 x y ( x ) = ( x 2 + c 1 x ) d x = x 3 3 + ζ 1 x 2 + ζ 2 \begin{aligned} y''(x) - \frac {y'(x)}x & = x \\ \frac {d^2 y}{dx^2} - \frac 1x \cdot \frac {dy}{dx} & = x & \small \blue{\text{Let }\frac {dy}{dx} = v(x) \implies \frac {d^2 y}{dx^2} = \frac {dv(x)}{dx}} \\ \frac {dv}{dx} - \frac vx & = x & \small \blue{\text{Multiply both sides by }\mu(x) = e^{\int -1/x \ dx} = \frac 1x} \\ \frac 1x \cdot \frac {dv}{dx} - \frac v{x^2} & = 1 \\ \frac d{dx} \left(\frac {v(x)}x \right) & = 1 \\ \int \frac d{dx} \left(\frac {v(x)}x \right) dx & = \int 1 \ dx \\ \frac {v(x)}x & = x + c_1 \\ v(x) & = x^2 + c_1 x \\ \frac {dy}{dx} & = x^2 + c_1x \\ \implies y(x) & = \int \left(x^2 + c_1x \right) dx \\ & = \boxed{\frac {x^3}3 + \zeta_1 x^2 + \zeta_2} \end{aligned}

@Anh Khoa Nguyễn Ngọc , note that x 3 3 ζ 1 x 2 ζ 2 \dfrac {x^3}3 - \zeta_1 x^2 - \zeta_2 is also a solution therefore I have deleted it. You have to mention that ζ 1 \zeta_1 and ζ 2 \zeta_2 are constants especially when you use fancy Greek letters. Just use c 1 c_1 and c 2 c_2 will do.

Chew-Seong Cheong - 10 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...