Differential Q[1]

Calculus Level 3

Let 8 d y d x = x + y 8\dfrac{dy}{dx} =x+y ; and for d y \displaystyle \int {dy} let the constant of integration be C C on right hand side of the equation. If the point ( 3 , 4 ) (-3,-4) lies on the graph of y ( x ) y(x) find the value of C C .

Note: Don't use standard formula for first order ODE to solve this.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Amal Hari
Feb 17, 2019

Let u = x + y u=x+y

8 d y d x = u 8 \frac{dy}{dx}=u [ 1 ] [1]

d u d x = 1 + d y d x \frac{du}{dx}=1+\frac{dy}{dx} [ 2 ] [2]

8 d y d x d x = u d x 8\frac{dy}{dx} dx =u dx

8 d y = u d x 8 dy =u dx [ 3 ] [3]

d y d x = u 8 \frac{dy}{dx}=\frac{u}{8}

From[2] and [3]

d u d x = 1 + d y d x = 1 + u 8 \frac{du}{dx}=1+\frac{dy}{dx}=1+\frac{u}{8}

d x = d u 1 + u 8 dx=\frac{du}{1+\frac{u}{8}}

Substituting into [3]

8 d y = u d u 1 + u 8 8 dy =u \frac{du}{1+\frac{u}{8}}

1 + u 8 = 8 + u 8 1+\frac{u}{8}=\frac{8+u}{8}

8 d y = 8 u d u 8 + u 8 dy =8 u \frac{du}{8+u}

d y = u d u 8 + u dy = u \frac{du}{8+u}

d y = u d u 8 + u \displaystyle \int dy = \int u \frac{ du}{8+u}

d y = [ 8 8 + u + 1 ] d u \displaystyle \int dy = \int [\frac{-8}{8+u} +1] du

y = 8 l n ( 8 + u ) + u + C y = -8\ ln( 8+u) +u +C

y = 8 ln ( 8 + x + y ) + x + y + C y = -8 \ln(8+x+y) +x+y +C

8 l n ( 8 + x + y ) = x + C -8\ ln( 8+x+y)= x +C

Substituting x=-3 and y=-4

8 ln ( 8 3 4 ) = 3 + C -8 \ln( 8-3-4)= -3 +C

8 l n ( 1 ) = 3 + C -8\ ln( 1)= -3 +C

3 + C = 0 -3 +C= 0

C = 3 C= 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...