Differential Systems

Calculus Level 5

2 d x d t + 2 x + d y d t y = 3 t \large 2\frac {dx}{dt} + 2x + \frac{dy}{dt} - y = 3t

d x d t + x + d y d t + y = 1 \large \frac{dx}{dt} + x + \frac{dy}{dt} + y = 1

x ( 0 ) = 1 x(0) = 1 ; y ( 0 ) = 3 y(0) = 3

Given that x x and y y are both functions of t t , the value of d y d x \frac{dy}{dx} when x = 1 + 3 e 2 e 3 x= 1 + \frac{3}{e} - \frac{2}{e^3} can be expressed in the form a e b + c a e b b e d + c \large -\frac{ae^{b} + c}{ae^{b} - be^{d} + c} where a a , b b , c c , and d d are distinct positive integers. Determine a b c d ( a + b + c + d ) abcd -(a+b+c+d) .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

2 d x d t + 2 x + d y d t y = 3 t . . . . . . . . . ( 1 ) d x d t + x + d y d t + y = 1 . . . . . . . . . . ( 2 ) 2\frac { dx }{ dt } +2x+\frac { dy }{ dt } -y=3t\quad \quad \quad \quad \quad .........(1)\\ \frac { dx }{ dt } +x+\frac { dy }{ dt } +y=1\quad \quad \quad \quad \quad \quad \quad ..........(2)

f r o m e q u a t i o n ( 1 ) a n d ( 2 ) w e k n o w t h a t d y d t + 3 y = 2 3 t = > y = 1 + 2 e 3 t t = > d y d t = 6 e 3 t 1 . . . . . . . . . ( 3 ) from\quad equation\quad (1)\quad and\quad (2)\quad we\quad know\quad that\quad \\ \frac { dy }{ dt } +3y=2-3t\\ =>\quad y=1+2{ e }^{ -3t }-t\\ =>\quad \frac { dy }{ dt } =\quad -6{ e }^{ -3t }-1\quad \quad \quad \quad .........(3)

f r o m ( 2 ) a n d ( 3 ) d x d t + x = 1 + 4 e 3 t + t = > x = t 2 e 3 t + 3 e t from\quad (2)\quad and\quad (3)\\ \frac { dx }{ dt } +x=1+4{ e }^{ -3t }+t\\ =>\quad x=t-2{ e }^{ -3t }+3{ e }^{ -t }

w h e n x = 1 + 3 e 2 e 3 t = 1 = > d x d t = 1 + 6 e 3 t 3 e t when\quad x=1+\frac { 3 }{ e } -\frac { 2 }{ { e }^{ 3 } } \quad t=1\\ =>\quad \frac { dx }{ dt } =1+6{ e }^{ -3t }-3{ e }^{ t }

a t t = 1 d y d x = [ 1 + 6 e 3 1 + 6 e 3 6 e 1 ] = [ e 3 + 6 e 3 3 e 2 + 6 ] at\quad t=1\quad \frac { dy }{ dx } =-\left[ \frac { 1+6{ e }^{ -3 } }{ 1+6{ e }^{ -3 }-6{ e }^{ -1 } } \right] =-\left[ \frac { { e }^{ 3 }\quad +\quad 6 }{ { e }^{ 3 }\quad -3{ e }^{ 2 }\quad +\quad 6\quad } \right]

[ e 3 + 6 e 3 3 e 2 + 6 ] = [ a e b + c a e 3 b e d + c ] a = 1 b = 3 c = 6 d = 2 a b c d ( a + b + c + d ) = 36 12 = 24 -\left[ \frac { { e }^{ 3 }\quad +\quad 6 }{ { e }^{ 3 }\quad -3{ e }^{ 2 }\quad +\quad 6\quad } \right] =-\left[ \frac { { ae }^{ b }\quad +\quad c }{ { ae }^{ 3 }\quad -b{ e }^{ d }\quad +\quad c\quad } \right] \\ a=1\quad b=\quad 3\quad c=6\quad d=2\\ abcd\quad -(a+b+c+d)=36-12=24

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...