differential!!!

Calculus Level 3

Find the general solution to the differential equation: d 2 y d 2 x d y d x 2 y = 8 \frac{d^2y}{d^2x}-\frac{dy}{dx}-2y= 8

A e 2 x + B e x 4 Ae^{2x} + Be^{x} -4 A e x + B e x 5 Ae^{x} + Be^{-x} -5 A e 3 x + B e x 4 Ae^{3x} + Be^{-x} -4 A e 2 x + B e x 4 Ae^{2x} + Be^{-x} -4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samuel Ayinde
Mar 6, 2015

The general solution =compimentary function, C.F + particular integral, P.I \textbf{The general solution =compimentary function, C.F + particular integral, P.I} To calculate the C.F, d 2 y d 2 x d y d x 2 y = 0 \frac{d^2y}{d^2x}-\frac{dy}{dx}-2y= 0
m 2 m 2 = 0 m^2 - m -2=0 m = 2 , m = 1 m= 2,m= -1 The solution of C.F = A e m 1 x + B e m 2 x Ae^{m_1x} + Be^{m_2x} = A e 2 x + B e x Ae^{2x} + Be^{-x}

To solve Particular integral, P.I on the R.H.S of the equation , y=8, we substitute the 8 with a constant c, therefore, d y d x = 0 \frac{dy}{dx}= 0 , d 2 y d 2 x = 0 \frac{d^2y}{d^2x}=0 substitute the value of d y d x = 0 \frac{dy}{dx}= 0 and d 2 y d 2 x = 0 \frac{d^2y}{d^2x}=0 into the real equation, therefore, 0 - 0 - 2y = 8 8 y = 4 -4 General solution = C . F + P . I C.F + P.I = A e 2 x + B e x 4 Ae^{2x} + Be^{-x} -4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...