A NonLinear Differential Equation.

Level pending

Let d 2 y d x 2 + d y d x = ( d y d x ) 2 \dfrac{d^2y}{dx^2} + \dfrac{dy}{dx} = (\dfrac{dy}{dx})^2 , where y ( 0 ) = 0 y(0) = 0 and y ( ln ( 3 ) ) = ln ( 2 ) y(\ln(3)) = \ln(2) .

If y p ( x ) y_{p}(x) is a solution to the above differential with the given conditions, find lim x + y p ( x ) \lim_{x \rightarrow +\infty} y_{p}(x) .


The answer is 1.386294.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 14, 2020

Let z = d y d x d z d x = d 2 y d x 2 z = \dfrac{dy}{dx} \implies \dfrac{dz}{dx} = \dfrac{d^2y}{dx^2} \implies d z d x + z = z 2 d z d x = z ( z 1 ) \dfrac{dz}{dx} + z = z^2 \implies \dfrac{dz}{dx} = z(z - 1) \implies

d z z ( z 1 ) = d x \displaystyle\int \dfrac{dz}{z(z - 1)} = \displaystyle\int dx

d z z ( z 1 ) = ( 1 z 1 1 z ) d z = \displaystyle\int \dfrac{dz}{z(z - 1)} = \displaystyle\int (\dfrac{1}{z - 1} - \dfrac{1}{z}) dz = ln ( z 1 z ) = x + C z 1 z = c 1 e x \ln(\dfrac{z - 1}{z}) = x + C \implies \dfrac{z - 1}{z} = c_{1}e^{x} \implies

z = 1 1 c 1 e x d y d x = 1 1 c 1 e x z = \dfrac{1}{1 - c_{1}e^x} \implies \dfrac{dy}{dx} = \dfrac{1}{1 - c_{1}e^{x}} \implies y = d x 1 c 1 e x y = \displaystyle\int \dfrac{dx}{1 - c_{1}e^x}

Let u = e x d u = e x d x 1 u d u = d x u = e^x \implies du = e^x dx \implies \dfrac{1}{u} du = dx \implies

d x 1 c 1 e x = 1 u ( 1 c 1 u ) d u = \displaystyle\int \dfrac{dx}{1 - c_{1}e^x} = \dfrac{1}{u(1 - c_{1}u)} du =

1 u ( 1 c 1 u ) a u + B 1 c 1 u \dfrac{1}{u(1 - c_{1}u)} \dfrac{a}{u} + \dfrac{B}{1 - c_{1}u} \implies ( B c 1 A ) u + A = 1 B c 1 A = 0 (B - c_{1}A)u + A = 1 \implies B - c_{1}A = 0 and

A = 1 B = c 1 A = 1 \implies B = c_{1} \implies y = ( 1 u + c 1 1 c 1 u ) d u = y = \displaystyle\int (\dfrac{1}{u} + \dfrac{c_{1}}{1 - c_{1}u}) du = ln ( u ) ln ( 1 c 1 ) + c 2 = \ln(u) - \ln(1 - c_{1}) + c_{2} =

ln ( u 1 c 1 u ) + c 2 = ln ( e x 1 c 1 e x ) + c 2 \ln(\dfrac{u}{1 - c_{1}u}) + c_{2} = \ln(\dfrac{e^x}{1 - c_{1}e^x}) + c_{2}

y ( x ) = ln ( e x 1 c 1 e x ) + c 2 \therefore y(x) = \ln(\dfrac{e^x}{1 - c_{1}e^x}) + c_{2} .

Using the Initial conditions are y ( 0 ) = 0 y(0) = 0 and y ( ln ( 3 ) ) = ln ( 2 ) y(\ln(3)) = \ln(2) we have:

y ( 0 ) = 0 = ln ( 1 1 c 1 ) + c 2 c 2 = ln ( 1 c 1 ) y(0) = 0 = \ln(\dfrac{1}{1 - c_{1}}) + c_{2} \implies c_{2} = \ln(1 - c_{1})

and

y ( ln ( 3 ) ) = ln ( 2 ) = ln ( 3 1 3 c 1 ) + ln ( 1 c 1 ) = ln ( 3 3 c 1 1 3 c 1 ) y(\ln(3)) = \ln(2) = \ln(\dfrac{3}{1 - 3c_{1}}) + \ln(1 - c_{1}) = \ln(\dfrac{3 - 3c_{1}}{1 - 3c_{1}}) \implies

2 = 3 3 c 1 1 3 c 1 2 6 c 1 = 3 3 c 1 c 1 = 1 3 2 = \dfrac{3 - 3c_{1}}{1 - 3c_{1}} \implies 2 - 6c_{1} = 3 - 3c_{1} \implies c_{1} = -\dfrac{1}{3} \implies

c 2 = ln ( 4 3 ) y p ( x ) = ln ( 4 e x 3 + e x ) c_{2} = \ln(\dfrac{4}{3}) \implies y_{p}(x) = \ln(\dfrac{4e^x}{3 + e^x})

Checking we obtain:

d y p d x = 3 3 + e x \dfrac{dy_{p}}{dx} = \dfrac{3}{3 + e^x} and d 2 y p d x 2 = 3 e x ( 3 + e x ) 2 \dfrac{d^2y_{p}}{dx^2} = \dfrac{-3e^x}{(3 + e^x)^2} and ( d y p d x ) 2 = 9 ( 3 + e x ) 2 (\dfrac{dy_{p}}{dx})^2 = \dfrac{9}{(3 + e^x)^2}

Substituting into the initial differential we have:

3 e x ( 3 + e x ) 2 + 3 3 + e x = 9 ( 3 + e x ) 2 = d 2 y p d x 2 \dfrac{-3e^x}{(3 + e^x)^2} + \dfrac{3}{3 + e^x} = \dfrac{9}{(3 + e^x)^2} = \dfrac{d^2y_{p}}{dx^2} .

lim x + y p ( x ) = lim x + ln ( 4 e x 3 + e x ) = \lim_{x \rightarrow +\infty} y_{p}(x) = \lim_{x \rightarrow +\infty} \ln(\dfrac{4e^x}{3 + e^x}) = ln ( lim x + 4 e x 3 + e x ) = ln ( 4 ) 1.386294 \ln(\lim_{x \rightarrow +\infty} \dfrac{4e^x}{3 + e^x}) = \ln(4) \approx \boxed{1.386294}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...