Differentiate, differentiate , just differentiate #RMM(1)

Calculus Level 5

Ω = lim n ( lim x 0 ( x n ( 2 n ) ! ! tan 1 x 2 tan 1 x 4 tan 1 x 2 n x n + 2 ) ) \Omega = \lim_{n\to \infty} \left(\lim_{ x\to 0} \left(\dfrac{x^n -\,(2n)!! \cdot \ \tan^{-1}\frac{x}{2} \cdot \tan^{-1} \frac{x}{4}\cdots\cdot \tan^{-1}\frac{x}{2n}}{x^{n+2}}\right)\right) If value of the Ω \Omega can be expressed as π a b \dfrac{\pi^a}{b} where a a and b b are positive integers. Find the value of a + b a+b .


Source: This problem was proposed by Prof. Marian Ursaresce, Romania in Romanian Mathematical Magazine

For more problems you may wish to visit my set RMM .


The answer is 74.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 15, 2018

Relevant wiki: Riemann Zeta Function

Consider the following product using Maclaurin series of tan 1 x \tan^{-1}x .

k = 1 n tan 1 x 2 k = ( x 2 x 3 3 2 3 + x 5 5 2 5 ) ( x 4 x 3 3 4 3 + x 5 5 4 5 ) ( x 6 x 3 3 6 3 + x 5 5 6 5 ) ( x 2 n x 3 3 2 n 3 + x 5 5 2 n 5 ) = k = 1 n x 2 k j = 1 n k j n x 2 k x 3 3 ( 2 j ) 3 + O ( x n + 4 ) = x n ( 2 n ) ! ! x n ( 2 n ) ! ! 1 3 ( x 2 2 2 + x 2 4 2 + x 2 6 2 + + x 2 ( 2 n ) 2 ) + O ( x n + 4 ) = x n ( 2 n ) ! ! x n + 2 12 ( 2 n ) ! ! k = 1 n 1 k 2 + O ( x n + 4 ) \small {\begin{aligned} \prod_{k=1}^n \tan^{-1} \frac x{2k} & = \left(\frac x2 - \frac {x^3}{3\cdot 2^3} + \frac {x^5}{5\cdot 2^5} - \cdots \right) \left(\frac x4 - \frac {x^3}{3\cdot 4^3} + \frac {x^5}{5\cdot 4^5} - \cdots \right) \left(\frac x6 - \frac {x^3}{3\cdot 6^3} + \frac {x^5}{5\cdot 6^5} - \cdots \right) \cdots \left(\frac x{2n} - \frac {x^3}{3\cdot {2n}^3} + \frac {x^5}{5\cdot {2n}^5} - \cdots \right) \\ & = \prod_{k=1}^n \frac {x}{2^k} - \sum_{j=1}^n \prod_{k\ne j}^n \frac {x}{2^k} \cdot \frac {x^3}{3(2j)^3} + O(x^{n+4}) \\ & = \frac {x^n}{(2n)!!} - \frac {x^n}{(2n)!!} \cdot \frac 13 \left(\frac {x^2}{2^2} + \frac {x^2}{4^2} + \frac {x^2}{6^2} + \cdots + \frac {x^2}{(2n)^2}\right) + O(x^{n+4}) \\ & = \frac {x^n}{(2n)!!} - \frac {x^{n+2}}{12(2n)!!}\sum_{k=1}^n \frac 1{k^2} + O(x^{n+4}) \end{aligned}}

Therefore,

Ω = lim n lim x 0 x n ( 2 n ) ! ! k = 1 n tan 1 x 2 k x n + 2 = lim n lim x 0 x n ( 2 n ) ! ! ( x n ( 2 n ) ! ! x n + 2 12 ( 2 n ) ! ! k = 1 n 1 k 2 + O ( x n + 4 ) ) x n + 2 = lim n lim x 0 x n + 2 12 k = 1 n 1 k 2 O ( x n + 4 ) x n + 2 Divide up and down by x n + 2 = lim n lim x 0 ( 1 12 k = 1 n 1 k 2 O ( x 2 ) ) = lim n 1 12 k = 1 n 1 k 2 Riemann zeta function ζ ( n ) = k = 1 1 k n = ζ ( 2 ) 12 = π 2 72 and ζ ( 2 ) = π 2 6 \begin{aligned} \Omega & = \lim_{n \to \infty} \lim_{x \to 0} \frac {x^n - (2n)!!\color{#3D99F6}\prod_{k=1}^n \tan^{-1}\frac x{2k}}{x^{n+2}} \\ & = \lim_{n \to \infty} \lim_{x \to 0} \frac {x^n - (2n)!! \color{#3D99F6} \left(\frac {x^n}{(2n)!!} - \frac {x^{n+2}}{12(2n)!!}\sum_{k=1}^n \frac 1{k^2} + O(x^{n+4}) \right)}{x^{n+2}} \\ & = \lim_{n \to \infty} \lim_{x \to 0} \frac {\frac {x^{n+2}}{12}\sum_{k=1}^n \frac 1{k^2} - O(x^{n+4})}{x^{n+2}} & \small \color{#3D99F6} \text{Divide up and down by }x^{n+2} \\ & = \lim_{n \to \infty} \lim_{x \to 0} \left(\frac 1{12}\sum_{k=1}^n \frac 1{k^2} - O(x^2) \right) \\ & = \lim_{n \to \infty} \frac 1{12}\sum_{k=1}^n \frac 1{k^2} & \small \color{#3D99F6} \text{Riemann zeta function } \zeta (n) = \sum_{k=1}^\infty \frac 1{k^n} \\ & = \frac {\color{#3D99F6}\zeta(2)}{12} = \frac {\pi^2}{72} & \small \color{#3D99F6} \text{and } \zeta (2) = \frac {\pi^2}6 \end{aligned}

Therefore, a + b = 2 + 72 = 74 a+b = 2 + 72 = \boxed{74} .

That's really great solution. Sir any idea solving it without using series. I tried but got stuck.

Naren Bhandari - 2 years, 7 months ago

Log in to reply

Nope. I was thinking about it.

Chew-Seong Cheong - 2 years, 7 months ago
Naren Bhandari
Oct 14, 2018

Here I will present my approaches

lim n ( lim x 0 ( x n ( 2 n ) ! ! tan 1 x 2 tan 1 x 4 tan 1 x 2 n x n + 2 ) ) = ? \lim_{n\to \infty}\left(\lim_{x\to 0} \left(\dfrac{x^n-\,(2n)!!\tan^{-1}\frac{x}{2}\cdot \tan^{-1}\frac{x}{4}\cdot \cdots \tan^{-1}\frac{x}{2n}}{x^{n+2}}\right)\right)=\,?

We have that Taylor series of tan 1 ( 1 z 1 ) = k = 0 ( 1 ) k z 2 k + 1 2 k + 1 \begin{aligned} \tan^{-1} (-1\leq z\leq 1) & =\sum_{k=0}^{\infty}\,(-1)^{k}\dfrac{z^{2k+1}}{2k+1} \end{aligned} Setting z = x 2 z=\frac{x}{2} we have then m = 1 n tan 1 x 2 m = m = 1 n ( k = 0 ( 1 ) k x 2 k + 1 ( 2 m ) 2 k + 1 2 k + 1 ) = x n m = 1 n ( k = 0 ( 1 ) k x 2 k ( 2 m ) 2 k + 1 2 k + 1 ) \begin{aligned}\prod_{m=1}^{n} \tan^{-1} \frac{x}{2m} & = \prod_{m=1}^{n}\left(\sum_{k=0}^{\infty}\,(-1)^{k}\dfrac{x^{2k+1}}{ \,(2m)^{2k+1} \cdot 2k+1}\right)\\ & = x^n\prod_{m=1}^{n}\left(\sum_{k=0}^{\infty}\,(-1)^{k}\dfrac{x^{2k}}{ \,(2m)^{2k+1} \cdot 2k+1}\right) \end{aligned} and hence the limit as Ω = 1 x 2 [ 1 ( 2 n ) ! ! m = 1 n ( k = 0 ( 1 ) k x 2 k ( 2 m ) 2 k + 1 2 k + 1 ) ] \Omega = \dfrac{1}{x^2}\left[1-\,(2n)!!\prod_{m=1}^{n}\left(\sum_{k=0}^{\infty}\,(-1)^{k}\dfrac{x^{2k}}{ \,(2m)^{2k+1} \cdot 2k+1}\right)\right] Differentiating w.r.t. x (L-Hopital case) using Leibniz product rule for multiple function and plugging x = 0 x=0 we have then Ω = ( 2 n ) ! ! 2 [ 2 3 m = 1 n 1 2 m m = 1 n ( 1 ( 2 m ) 2 ) ] Ω = 1 3 lim n ( m = 1 n 1 4 m 2 ) = 1 3 ( π 2 24 ) = π 2 72 \begin{aligned} \Omega & = \dfrac{\,(2n)!!}{2}\left[\dfrac{2}{3}\prod_{m=1}^{n}\dfrac{1}{2m} \sum_{m=1}^{n} \left(\dfrac{1}{\,(2m)^2}\right) \right] \\ \Omega = & \dfrac{1}{3} \lim_{n\to \infty} \left(\sum_{m=1}^{n}\dfrac{1}{4m^2}\right) = \dfrac{1}{3}\left(\dfrac{\pi^2}{24}\right)= \dfrac{\pi^2}{72}\end{aligned}


Alternative solution Set w = x n ( 2 n ) ! ! ( k = 1 n tan 1 x 2 k x 2 k ) \begin{aligned} w & = \dfrac{x^n}{\,(2n)!!}\left(\prod_{k=1}^{n}\dfrac{\tan^{-1}\frac{x}{2k}}{\frac{x}{2k}} \right)\end{aligned} Therefore, x n ( 2 n ) ! ! w = x n x n k = 1 n tan 1 x 2 k x 2 k x^n-\,(2n)!! w = x^n-x^n\prod_{k=1}^{n}\dfrac{\tan^{-1}\frac{x}{2k}}{\frac{x}{2k}} Dividing by x n + 2 x^{n+2} we obtain the following x n ( 2 n ) ! ! w x n + 2 = 1 x 2 ( 1 k = 1 n tan 1 x 2 k x 2 k ) \dfrac{x^n-(2n)!!w }{x^{n+2}}= \dfrac{1}{x^2}\left(1-\prod_{k=1}^{n}\dfrac{\tan^{-1}\frac{x}{2k}}{\frac{x}{2k}}\right) As x 0 x\to 0 the limit to RHS takes the form of 0 / 0 0/0 . Since the limit of k = 1 n tan 1 x 2 k x 2 k \displaystyle \prod_{k=1}^{n}\dfrac{\tan^{-1}\frac{x}{2k}}{\frac{x}{2k}} is 1. So let us plug y = k = 1 n tan 1 x 2 k x 2 k 1 log y = 1 k = 1 n ( log ( m = 0 n ( 1 ) m 2 k x 2 m ( 2 k ) 2 m + 1 ( 2 m + 1 ) ) ) \begin{aligned} y & = \prod_{k=1}^{n}\dfrac{\tan^{-1}\frac{x}{2k}}{\frac{x}{2k}} \\1- \log y& =1-\sum_{k=1}^{n}\left(\log\left(\sum_{m=0}^{n}(-1)^m\dfrac{2k\cdot x^{2m}}{\,(2k)^{2m+1}\cdot (2m+1)}\right)\right)\end{aligned} Differentiating denominator we obtain 2 x 2x numerator as follows X = y m = 0 n ( ( 1 ) m x 2 m ( 2 k ) 2 m ( 2 m + 1 ) ) 1 =1 as x 0 ( ( 1 ) m + 1 2 ( m + 1 ) x 2 m + 1 ( 2 ( m + 1 ) ) 2 ( 2 m + 3 ) ) X = - y\sum_{m=0}^{n}\underbrace{\left(\,(-1)^m\dfrac{x^{2m}}{\,\,(2k)^{2m}\,(2m+1)}\right)^{-1}}_{\text{=1 as x}\to 0} \left((-1)^{m+1}\dfrac{\,2(m+1)x^{2m+1}}{(2(m+1))^2\,(2m+3)}\right) and hence our limit becomes Ω = lim n ( 2 x 2 x 1 3 m = 1 n 1 4 m 2 ) = 1 3 π 2 4 6 = π 2 72 \Omega = \lim_{n\to \infty}\left(\dfrac{2x}{2x}\dfrac{1}{3} \sum_{m=1}^{n}\dfrac{1}{4m^2}\right)= \dfrac{1}{3}\dfrac{\pi^2}{4\cdot 6} = \dfrac{\pi^2}{72} Thus required answer is 74 74 .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...