Differentiate how? Part 3

Calculus Level 1

y = e x + e x + e x + e x + \huge y=e^{x + e^{x + e^{x + e^{x + \cdots }}}}

Let y y denote the infinite power tower function as described above.

Determine the value of d y d x \frac{dy}{dx} in terms of y y .

y + 1 1 y \frac { y+1 }{ 1-y } y 1 y \frac { y }{ 1-y } 2 y 1 y \frac { 2y }{ 1-y } 1 1 y \frac { 1 }{ 1-y }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Raj Rajput
Aug 15, 2015

Adrabi Abderrahim
Aug 29, 2015

we've y = e x + e x + . . . y={ e }^{ x+{ e }^{ x+...\infty } }

then d y d x = ( d d x ( x + e x + e x + . . . ) ) y = ( d d x ( x + y ) ) y = ( 1 + d y d x ) y \frac { dy }{ dx } =( \frac { d }{ dx }(x + { e }^{ x+{ e }^{ x+...\infty } })) y = ( \frac { d }{ dx }(x + y)) y = ( 1 + \frac { dy }{ dx }) y

d y d x ( 1 y ) = y d y d x = y 1 y \Rightarrow \frac { dy }{ dx } (1-y) = y \Rightarrow \frac { dy }{ dx } = \frac { y }{ 1-y }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...