Differentiate Me!

Calculus Level 3

n = 1 n 5 2 n \large \displaystyle \sum_{n=1}^{\infty} \frac {n^5}{2^n}

Let the value of the above summation be A A . What is the value of A + 7 \sqrt{A+7} ?


The answer is 33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Ramez Hindi
Mar 7, 2015

we have i = 1 i 5 2 i = i = 0 ( i + 1 ) 5 2 i + 1 = 1 2 i = 0 ( i + 1 ) 5 2 i \sum\limits_{i=1}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}}=\sum\limits_{i=0}^{\infty }{\frac{{{\left( i+1 \right)}^{5}}}{{{2}^{i+1}}}=\frac{1}{2}\sum\limits_{i=0}^{\infty }{\frac{{{\left( i+1 \right)}^{5}}}{{{2}^{i}}}}}

now by using the binomial expand for ( i + 1 ) 5 = i 5 + 5 i 4 + 10 i 3 + 10 i 2 + 5 i + 1 {{\left( i+1 \right)}^{5}}={{i}^{5}}+5{{i}^{4}}+10{{i}^{3}}+10{{i}^{2}}+5i+1

So i = 1 i 5 2 i = 1 2 ( i = 0 i 5 2 i + 5 i = 0 i 4 2 i + 10 i = 0 i 3 2 i + 10 i = 0 i 2 2 i + 5 i = 0 i 2 i + i = 0 1 2 i ) \sum\limits_{i=1}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}=\frac{1}{2}\left( \sum\limits_{i=0}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}+5\sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}+10\sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}+10\sum\limits_{i=0}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}+5\sum\limits_{i=0}^{\infty }{\frac{i}{{{2}^{i}}}+\sum\limits_{i=0}^{\infty }{\frac{1}{{{2}^{i}}}}}}}}} \right)}

But i = 0 1 2 i = 1 + i = 1 ( 1 2 ) i = 1 2 1 1 2 = 1 2 1 2 = 2 \sum\limits_{i=0}^{\infty }{\frac{1}{{{2}^{i}}}=1+\sum\limits_{i=1}^{\infty }{{{\left( \frac{1}{2} \right)}^{i}}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=2}} & i = 0 i 2 i = 0 + i = 1 i 2 i = 2 \sum\limits_{i=0}^{\infty }{\frac{i}{{{2}^{i}}}=0+\sum\limits_{i=1}^{\infty }{\frac{i}{{{2}^{i}}}}}=2

since i = 1 i 2 i = i = 0 i + 1 2 i + 1 = 1 2 ( i = 0 i 2 i + i = 0 1 2 i ) = 1 2 ( i = 1 i 2 i + 2 ) \sum\limits_{i=1}^{\infty }{\frac{i}{{{2}^{i}}}=\sum\limits_{i=0}^{\infty }{\frac{i+1}{{{2}^{i+1}}}=}\frac{1}{2}\left( \sum\limits_{i=0}^{\infty }{\frac{i}{{{2}^{i}}}+\sum\limits_{i=0}^{\infty }{\frac{1}{{{2}^{i}}}}} \right)=\frac{1}{2}\left( \sum\limits_{i=1}^{\infty }{\frac{i}{{{2}^{i}}}+2} \right)} ( 1 1 2 ) i = 1 i 2 i = 1 \Rightarrow \left( 1-\frac{1}{2} \right)\sum\limits_{i=1}^{\infty }{\frac{i}{{{2}^{i}}}=1} i = 1 i 2 i = 2 \Rightarrow \sum\limits_{i=1}^{\infty }{\frac{i}{{{2}^{i}}}}=2

Thus i = 1 i 2 2 i = 1 2 ( i = 1 i 2 2 i + 4 + 2 ) = 1 2 i = 1 i 2 2 i + 3 \sum\limits_{i=1}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}}=\frac{1}{2}\left( \sum\limits_{i=1}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}+4+2} \right)=\frac{1}{2}\sum\limits_{i=1}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}+3} ( 1 1 2 ) i = 1 i 2 2 i = 3 i = 1 i 2 2 i = 6 \Rightarrow \left( 1-\frac{1}{2} \right)\sum\limits_{i=1}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}=3\Leftrightarrow \sum\limits_{i=1}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}=6}}

Same work we will work for i = 0 i 3 2 i & i = 0 i 4 2 i \sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}}\,\,\And \,\,\sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}}

i = 0 i 3 2 i = 0 + i = 1 i 3 2 i = i = 0 ( i + 1 ) 3 2 i + 1 = 1 2 ( i = 0 i 3 2 i + 3 i = 0 i 2 2 i + 3 i = 0 i 2 i + i = 0 1 2 i ) \sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}=0+\sum\limits_{i=1}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}=\sum\limits_{i=0}^{\infty }{\frac{{{\left( i+1 \right)}^{3}}}{{{2}^{i+1}}}=\frac{1}{2}\left( \sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}+3\sum\limits_{i=0}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}+3\sum\limits_{i=0}^{\infty }{\frac{i}{{{2}^{i}}}+\sum\limits_{i=0}^{\infty }{\frac{1}{{{2}^{i}}}}}}} \right)}}}

= 1 2 ( i = 1 i 3 2 i + 3 ( 6 ) + 3 ( 2 ) + 2 ) =\frac{1}{2}\left( \sum\limits_{i=1}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}+3\left( 6 \right)+3\left( 2 \right)+2} \right) i = 1 i 3 2 i = 1 2 i = 1 i 3 2 i + 13 \Rightarrow \sum\limits_{i=1}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}}=\frac{1}{2}\sum\limits_{i=1}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}+13} i = 0 i 3 2 i = 26 \Rightarrow \sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}=26}

Similarly we expand i = 0 i 4 2 i = 0 + i = 1 i 4 2 i = i = 0 ( i + 1 ) 4 2 i + 1 = 1 2 i = 0 ( i + 1 ) 4 2 i \sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}=0+\sum\limits_{i=1}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}=\sum\limits_{i=0}^{\infty }{\frac{{{\left( i+1 \right)}^{4}}}{{{2}^{i+1}}}}}}=\frac{1}{2}\sum\limits_{i=0}^{\infty }{\frac{{{\left( i+1 \right)}^{4}}}{{{2}^{i}}}}

i = 0 i 4 2 i = 1 2 ( i = 0 i 4 2 i + 4 i = 0 i 3 2 i + 6 i = 0 i 2 2 i + 4 i = 0 i 2 i + i = 0 1 2 i ) \Rightarrow \sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}}=\frac{1}{2}\left( \sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}+4\sum\limits_{i=0}^{\infty }{\frac{{{i}^{3}}}{{{2}^{i}}}+6\sum\limits_{i=0}^{\infty }{\frac{{{i}^{2}}}{{{2}^{i}}}+4\sum\limits_{i=0}^{\infty }{\frac{i}{{{2}^{i}}}+\sum\limits_{i=0}^{\infty }{\frac{1}{{{2}^{i}}}}}}}} \right)

= 1 2 i = 0 i 4 2 i + 1 2 ( 4 ( 26 ) + 6 ( 6 ) + 4 ( 2 ) + 2 ) =\frac{1}{2}\sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}+\frac{1}{2}\left( 4\left( 26 \right)+6\left( 6 \right)+4\left( 2 \right)+2 \right)} i = 0 i 4 2 i = 1 2 i = 0 i 4 2 i + 75 \Rightarrow \sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}}=\frac{1}{2}\sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}+75} i = 0 i 4 2 i = 150 \Leftrightarrow \sum\limits_{i=0}^{\infty }{\frac{{{i}^{4}}}{{{2}^{i}}}=150}

Thus i = 1 i 5 2 i = 1 2 i = 0 i 5 2 i + 1 2 ( 5 ( 150 ) + 10 ( 26 ) + 10 ( 6 ) + 5 ( 2 ) + 2 ) \sum\limits_{i=1}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}=\frac{1}{2}\sum\limits_{i=0}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}+\frac{1}{2}\left( 5\left( 150 \right)+10\left( 26 \right)+10\left( 6 \right)+5\left( 2 \right)+2 \right)}} thus i = 1 i 5 2 i = 1082 \sum\limits_{i=1}^{\infty }{\frac{{{i}^{5}}}{{{2}^{i}}}=1082} hence A + 7 = 1082 + 7 = 1089 = 33 2 = 33 \sqrt{A+7}=\sqrt{1082+7}=\sqrt{1089}=\sqrt{{33}^{2}}=33

Nice solution! Wish I could learn these stuffs.

Joeie Christian Santana - 6 years, 3 months ago

Log in to reply

Read Euler the master of us all by Will Dunham it will walk you thru a lot of these series tricks used by the master himself.

Julian Branker - 6 years, 3 months ago

did the same!

Joel Yip - 6 years, 3 months ago

Wonderful answer

anshu garg - 4 years, 6 months ago

You were ask to answer using an expression with respect to A, not the actual numerical value.

Don Biso-oh Manyu-MolykoPikin - 1 year, 11 months ago
Arthur Komatsu
Mar 8, 2015

We all know that n = 1 x n = x 1 x \sum\limits _{ n=1 }^{ \infty }{ { x }^{ n } } =\frac { x }{ 1-x } for x < 1 \left| x \right| <1 .

So, d d x ( n = 1 x n ) = n = 1 d d x ( x n ) = n = 1 n x n 1 = d d x ( x 1 x ) n = 1 n x n = x d d x ( x 1 x ) \frac { d }{ dx } \left( \sum\limits _{ n=1 }^{ \infty }{ { x }^{ n } } \right) =\sum\limits _{ n=1 }^{ \infty }{ \frac { d }{ dx } { \left( { x }^{ n } \right) } } =\sum\limits _{ n=1 }^{ \infty }{ n{ x }^{ n-1 } } =\frac { d }{ dx } \left( \frac { x }{ 1-x } \right)\Rightarrow \sum\limits _{ n=1 }^{ \infty }{ n{ x }^{ n } } =x\frac { d }{ dx } \left( \frac { x }{ 1-x } \right)

If this process is done 5 times, we get: n = 1 n 5 x n = x d d x ( x d d x ( x d d x ( x d d x ( x d d x ( x 1 x ) ) ) ) ) \sum\limits _{ n=1 }^{ \infty }{ { n }^{ 5 }{ x }^{ n } } = x\frac { d }{ dx } \left( x\frac { d }{ dx } \left( x\frac { d }{ dx } \left( x\frac { d }{ dx } \left( x\frac { d }{ dx } \left( \frac { x }{ 1-x } \right) \right) \right) \right) \right)

So for x = 1 2 x=\frac { 1 }{ 2 } , n = 1 n 5 2 n = [ x d d x ( x d d x ( x d d x ( x d d x ( x d d x ( x 1 x ) ) ) ) ) ] x = 1 2 \sum\limits _{ n=1 }^{ \infty }{ \frac { { n }^{ 5 } }{ { 2 }^{ n } } } = { \left[ x\frac { d }{ dx } \left( x\frac { d }{ dx } \left( x\frac { d }{ dx } \left( x\frac { d }{ dx } \left( x\frac { d }{ dx } \left( \frac { x }{ 1-x } \right) \right) \right) \right) \right) \right] }_{ x=\frac { 1 }{ 2 } }

After some calculation, you get n = 1 n 5 2 n = [ x ( x 4 + 26 x 3 + 66 x 2 + 26 x + 1 ) ( x 1 ) 6 ] x = 1 2 = 1082 \sum\limits _{ n=1 }^{ \infty }{ \frac { { n }^{ 5 } }{ { 2 }^{ n } } } ={ \left[ \frac { x(x^{ 4 }+26x^{ 3 }+66x^{ 2 }+26x+1) }{ (x-1)^{ 6 } } \right] }_{ x=\frac { 1 }{ 2 } } =1082 and finally 1082 + 7 = 33 \sqrt { 1082+7 } =33

Ne-ko Nya
Mar 9, 2015

The solution below is not written by me , i just share it from another forum which i asked.

Apparently it uses something called Poyla form.

The solver is the forum user Hoempa , and this is the link

As n = 1 ( n k ) 2 n = 2 \large \displaystyle \sum_{n=1}^{\infty} \frac{{n \choose k}}{2^n} = 2

and n 5 = 120 ( n 5 ) + 240 ( n 4 ) + 150 ( n 3 ) + 30 ( n 2 ) + 1 ( n 1 ) n^5 = 120{n \choose 5}+240{n \choose 4}+150{n \choose 3}+30{n \choose 2}+1{n \choose 1} , n = 1 n 5 2 n = 2 ( 120 + 240 + 150 + 30 + 1 ) = 1082 \sum_{n=1}^{\infty} \frac{n^5}{2^n} = 2(120+240+150+30+1)=1082

therefore A + 7 = 1089 = 33 \sqrt{A+7}=\sqrt{1089}=33

I posted here only after i obtained permission from the solver. I hope i credit it enough to not being called plagiariser.

Lastly , i don't understand this solution , never learn Poyla before. Please don't ask me anything significant. Just sharing for maybe.......the enlightment of some other user?

Nooice! +1

Use Poyla form for this !

Pi Han Goh - 6 years, 3 months ago

Wow! I had never heard of the word Polya before . Thanks for increasing my vocab! :P

Nice solution :D

Let S = i = 1 i 5 2 i S = \displaystyle \sum_{i=1}^\infty \frac{i^{5}}{2^{i}} .

Thus, S = 1 5 2 1 + 2 5 2 2 + 3 5 2 3 + + n 5 2 n + S = \frac{1^{5}}{2^{1}} + \frac{2^{5}}{2^{2}} + \frac{3^{5}}{2^{3}} + \ldots + \frac{n^{5}}{2^{n}} + \ldots

Then, multiplying it by 2 2 gives us: 2 S = 1 5 2 0 + 2 5 2 1 + 3 5 2 2 + + ( n + 1 ) 5 2 n + 2S = \frac{1^{5}}{2^{0}} + \frac{2^{5}}{2^{1}} + \frac{3^{5}}{2^{2}} + \ldots + \frac{(n + 1)^{5}}{2^{n}} + \ldots

Thus, we can write: 2 S S = 1 + 2 5 1 5 2 1 + + ( n + 1 ) 5 n 5 2 n + 2S - S = 1 + \frac{2^{5} - 1^{5}}{2^{1}} + \ldots + \frac{(n + 1)^5 - n^{5}}{2^{n}} + \ldots

So: S = 1 + 5 i = 1 i 4 2 i + 10 i = 1 i 3 2 i + 10 i = 1 i 2 2 i + 5 i = 1 i 2 i + i = 1 1 2 i S = 1 + 5\displaystyle \sum_{i=1}^\infty \frac{i^{4}}{2^{i}} + 10\displaystyle \sum_{i=1}^\infty \frac{i^{3}}{2^{i}} + 10\displaystyle \sum_{i=1}^\infty \frac{i^{2}}{2^{i}} + 5\displaystyle \sum_{i=1}^\infty \frac{i}{2^{i}} + \displaystyle \sum_{i=1}^\infty \frac{1}{2^{i}}

I will calculate this by parts.

First, let S 1 = i = 1 1 2 i S_{1} = \displaystyle \sum_{i=1}^\infty \frac{1}{2^{i}} ; this is a geometric series with first term equal to 1 2 \frac{1}{2} and ratio 1 2 \frac{1}{2} ; thus, its value equals 1 2 1 1 2 = 1 \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1 .

Now, let S 2 = i = 1 i 2 i S_{2} = \displaystyle \sum_{i=1}^\infty \frac{i}{2^{i}} . We can write:

S 2 = 1 2 1 + 2 2 2 + 3 2 3 + + n 2 n + S_{2} = \frac{1}{2^{1}} + \frac{2}{2^{2}} + \frac{3}{2^{3}} + \ldots + \frac{n}{2^{n}} + \ldots

Multiplying it by two yields:

2 S 2 = 1 + 2 2 1 + 3 2 2 + 4 2 3 + + ( n + 1 ) 2 n + 2S_{2} = 1 + \frac{2}{2^{1}} + \frac{3}{2^{2}} + \frac{4}{2^{3}} + \ldots + \frac{(n + 1)}{2^{n}} + \ldots

Thus: 2 S 2 S 2 = 1 + 1 2 1 + 1 2 2 + 1 2 3 + + 1 2 n + 2S_{2} - S_{2} = 1 + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \ldots + \frac{1}{2^{n}} + \ldots .

From this we derive: S 2 = 1 + S 1 = 1 + 1 = 2 S_{2} = 1 + S_{1} = 1 + 1 = 2 .

Thirdly, let S 3 = i = 1 i 2 2 i S_{3} = \displaystyle \sum_{i=1}^\infty \frac{i^{2}}{2^{i}} . We can write:

S 3 = 1 2 2 1 + 2 2 2 2 + 3 2 2 3 + + n 2 2 n + S_{3} = \frac{1^{2}}{2^{1}} + \frac{2^{2}}{2^{2}} + \frac{3^{2}}{2^{3}} + \ldots + \frac{n^{2}}{2^{n}} + \ldots

Multiplying it by two yields:

2 S 3 = 1 + 2 2 2 1 + 3 2 2 2 + 4 2 2 3 + + ( n + 1 ) 2 2 n + 2S_{3} = 1 + \frac{2^{2}}{2^{1}} + \frac{3^{2}}{2^{2}} + \frac{4^{2}}{2^{3}} + \ldots + \frac{(n + 1)^{2}}{2^{n}} + \ldots

Thus: 2 S 3 S 3 = 1 + 3 2 1 + 5 2 2 + 7 2 3 + + ( 2 n + 1 ) 2 n + 2S_{3} - S_{3} = 1 + \frac{3}{2^{1}} + \frac{5}{2^{2}} + \frac{7}{2^{3}} + \ldots + \frac{(2n + 1)}{2^{n}} + \ldots .

From this we derive: S 2 = 1 + 2 S 2 + S 1 = 1 + 4 + 1 = 6 S_{2} = 1 + 2*S_{2} + S_{1} = 1 + 4 + 1 = 6

Now, for S 4 = 1 3 2 1 + 2 3 2 2 + 3 3 2 3 + + n 3 2 n + S_{4} = \frac{1^{3}}{2^{1}} + \frac{2^{3}}{2^{2}} + \frac{3^{3}}{2^{3}} + \ldots + \frac{n^{3}}{2^{n}} + \ldots

Using a similar procedure we arrive at: S 4 = 1 + 3 S 3 + 3 S 2 + S 1 = 1 + 3 6 + 3 2 + 1 = 26 S_{4} = 1 + 3S_{3} + 3S_{2} + S_{1} = 1 + 3*6 + 3*2 + 1 = 26

Finally, for S 5 = 1 4 2 1 + 2 4 2 2 + 3 4 2 3 + + n 4 2 n + S_{5} = \frac{1^{4}}{2^{1}} + \frac{2^{4}}{2^{2}} + \frac{3^{4}}{2^{3}} + \ldots + \frac{n^{4}}{2^{n}} + \ldots , we have:

S 5 = 1 + 4 S 4 + 6 S 3 + 4 S 2 + S 1 = S_{5} = 1 + 4S_{4} + 6S_{3} + 4S_{2} + S_{1} =

1 + 4 26 + 6 6 + 4 2 + 1 = 1 + 104 + 36 + 8 + 1 = 150 1 + 4*26 + 6*6 + 4*2 + 1 = 1 + 104 + 36 + 8 + 1 = 150 .

Thus: S = 1 + 5 S 5 + 10 S 4 + 10 S 3 + 5 S 2 + 1 = S = 1 + 5S_{5} + 10S_{4} + 10S_{3} + 5S_{2} + 1 =

1 + 5 150 + 10 26 + 10 6 + 5 2 + 1 = 12 + 750 + 260 + 60 = 1082 1 + 5*150 + 10*26 + 10*6 + 5*2 + 1 = 12 + 750 + 260 + 60 = 1082

Thus, A = 1082 A = 1082 , and so A + 7 = 1089 = 33 \sqrt{A + 7} = \sqrt{1089} = 33 .

I loved how Pascal Triangle fits inside! +1

Pi Han Goh - 6 years, 3 months ago

Instead of calculating it every time, you could use induction and get a recurrence of the form S n + 2 = r = 0 n ( n r ) S r + 1 S_{n+2}=\sum_{r=0}^n \binom{n}{r} S_{r+1} . Prove it just as you proved it above five times and then just calculate them stepwise.

Ajinkya Shivashankar - 4 years, 4 months ago

Nice and simplified solution...

Bhupendra Jangir - 6 years, 3 months ago
Chew-Seong Cheong
Nov 22, 2016

For 1 < x < 1 -1< x < 1 , we have:

n = 0 x n = 1 1 x Differentiate both sides n = 1 n x n 1 = 1 ( 1 x ) 2 Multiply both sides by x n = 1 n x n = x ( 1 x ) 2 Differentiate again n = 1 n 2 x n 1 = 1 + x ( 1 x ) 3 × x again n = 1 n 2 x n = x ( 1 + x ) ( 1 x ) 3 Differentiate again n = 1 n 3 x n 1 = 1 + 4 x + x 2 ( 1 x ) 4 × x again n = 1 n 3 x n = x + 4 x 2 + x 3 ( 1 x ) 4 Differentiate again n = 1 n 4 x n 1 = 1 + 11 x + 11 x 2 + x 3 ( 1 x ) 5 × x again n = 1 n 4 x n = x + 11 x 2 + 11 x 3 + x 4 ( 1 x ) 5 Differentiate again n = 1 n 5 x n 1 = 1 + 26 x + 66 x 2 + 26 x 3 + x 4 ( 1 x ) 6 × x again n = 1 n 5 x n = x + 26 x 2 + 66 x 3 + 26 x 4 + x 5 ( 1 x ) 6 Put x = 1 2 n = 1 n 5 2 n = 1 2 + 26 2 2 + 66 2 3 + 26 2 4 + 1 2 5 ( 1 1 2 ) 6 = 2 + 26 ( 4 ) + 66 ( 8 ) + 26 ( 16 ) + 32 = 1082 \begin{aligned} \sum_{n=0}^\infty x^n & = \frac 1{1-x} & \small {\color{#3D99F6}\text{Differentiate both sides}} \\ \sum_{n=1}^\infty nx^{n-1} & = \frac 1{(1-x)^2} & \small {\color{#3D99F6}\text{Multiply both sides by }x} \\ \sum_{n=1}^\infty nx^n & = \frac x{(1-x)^2} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^2x^{n-1} & = \frac {1+x}{(1-x)^3} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^2x^n & = \frac {x(1+x)}{(1-x)^3} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^3x^{n-1} & = \frac {1+4x+x^2}{(1-x)^4} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^3x^n & = \frac {x+4x^2+x^3}{(1-x)^4} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^4x^{n-1} & = \frac {1+11x+11x^2+x^3}{(1-x)^5} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^4x^n & = \frac {x+11x^2+11x^3+x^4}{(1-x)^5} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^5x^{n-1} & = \frac {1+26x+66x^2+26x^3+x^4}{(1-x)^6} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^5x^n & = \frac {x+26x^2+66x^3+26x^4+x^5}{(1-x)^6} & \small {\color{#3D99F6} \text{Put }x = \frac 12} \\ \sum_{n=1}^\infty \frac {n^5}{2^n} & = \frac {\frac 12 +\frac {26}{2^2}+\frac {66}{2^3}+\frac {26}{2^4}+\frac 1{2^5}}{\left(1-\frac 12\right)^6} \\ & = 2+26(4)+66(8) + 26(16) + 32 \\ & = 1082 \end{aligned}

A + 7 = 1082 + 7 = 33 \implies \sqrt{A+7} = \sqrt{1082+7} = \boxed{33} .


Noel Lo
Jun 15, 2015

For me I used differentiation. Just requires a lot of patience...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...