Differentiate sin and its inverse

Calculus Level 2

For any real number π 2 < x < π \dfrac{\pi}{2}< x < \pi evaluate the following:-
d d x ( sin 1 ( sin ( x ) ) ) \dfrac{d}{dx} \left({\sin}^{-1}\left(\sin\left(x\right)\right)\right)

Definitions used:

  • sin 1 ( x ) \sin^{-1}(x) is the arcsine function which gives the unique angle θ x [ π 2 , π 2 ] \theta_x\in \left[\dfrac{-\pi}{2},\dfrac{\pi}{2}\right] such that sin ( θ x ) = x \sin(\theta_x)=x
Cannot be determined 0 -1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ashish Menon
Jun 4, 2016

Applying chain rule , we get:-
d d x ( sin 1 ( sin ( x ) ) ) = 1 1 sin 2 ( x ) × d d x ( sin ( x ) ) = 1 cos ( x ) × cos ( x ) = cos ( x ) cos ( x ) \begin{aligned} \dfrac{d}{dx} \left({\sin}^{-1}\left(\sin\left(x\right)\right)\right) & = \dfrac{1}{\sqrt{1 - {\sin}^{2}\left(x\right)}} × \dfrac{d}{dx} \left(\sin\left(x\right)\right)\\ \\ & = \dfrac{1}{|\cos\left(x\right)|} × \cos\left(x\right)\\ \\ & = \dfrac{\cos\left(x\right)}{|\cos\left(x\right)|} \end{aligned}

Since 90 ° < x < 180 ° {90}^° < x < {180}^° , x x lies in the second quadrant. And in this quadrant, all other trigonometric funxtions except sin ( x ) \sin\left(x\right) and csc ( x ) \csc\left(x\right) are negative. So, cos ( x ) \cos\left(x\right) is negative too.

So, cos ( x ) cos ( x ) = 1 \dfrac{\cos\left(x\right)}{|\cos\left(x\right)|} = \color{#3D99F6}{\boxed{-1}}

Yes, which is why he applied chain rule...for domain of arcsin x, arcsin (sin x) = x for [-π/2, π/2].

Joe Potillor - 4 years, 6 months ago

But doesn't arcsin not exist on 90 to 180?

J D - 5 years ago
Rishabh Jain
Jun 4, 2016

sin 1 ( sin ( x ) ) = sin 1 ( sin ( π x ) ) = π x {\sin}^{-1}\left(\sin\left(x\right)\right)={\sin}^{-1}\left(\sin\left(\pi-x\right)\right)=\pi-x Differentiation of which is obviously 1 \large\boxed{-1} .


Recall definition that sin 1 ( sin y ) = y \sin^{-1}(\sin y)=y if π 2 y π 2 \dfrac{-\pi}2\leq y\leq\dfrac{\pi}2 and in the question since:

π 2 x π \dfrac{\pi}2\leq x\leq \pi 0 π x π 2 \therefore 0 \leq \pi-x\leq \dfrac{\pi}2

Sayandeep Ghosh
Jun 6, 2016

Same approach. ....+1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...