Differentiate under integral sign

Calculus Level 4

0 sin ( 1729 x ) x d x = ? \int_{0}^{\infty} \dfrac{\sin(1729x)}{x} \, dx = \, ?


Try more integral problems here .


The answer is 1.571.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Dhruva Patil
Nov 21, 2014

Going by the title and the use of 1729 as the co-efficient of x, people might be tempted to assign a random variable for 1729 and differentiate with respect to that (I was too.). But that won't help us as we end up getting indeterminate values to deal with in the end. The trick is to cancel out the 'x' in the denominator and to do it in such a way that in the end the bounds given won't make us regret approaching it that way. This is my approach: Let us call 1729 as 'a' and let b be any number. I ( b ) = 0 s i n ( a x ) x e b x d x D i f f e r e n t i a t e w i t h r e s p e c t t o b I ( b ) = 0 s i n ( a x ) e b x d x s i n ( a x ) c a n b e w r i t t e n a s I m { e i a x } ( I m a g i n a r y p a r t o f e i a x ) I ( b ) = I m { 0 e ( b i a ) x d x } I ( b ) = I m { 1 b i a [ e ( b i a ) ( ) e ( b i a ) ( 0 ) ] } I ( b ) = I m { 1 b i a } M u l t i p l y i n g a n d d i v i d i n g b y ( b + i a ) w e g e t : I ( b ) = I m { b i a b 2 + a 2 } T a k i n g o n l y t h e i m a g i n a r y p a r t , w e g e t I ( b ) = a b 2 + a 2 I n t e g r a t i n g b o t h s i d e s w i t h r e s p e c t t o b I ( b ) = a b 2 + a 2 d b I ( b ) = t a n 1 ( b a ) + c S i n c e I ( ) = 0 c = π 2 I n s e r t i n g b = 0 a n d a = 1729 b a c k i n t o t h e e q u a t i o n : I ( 0 ) = t a n 1 ( 0 1729 ) + π 2 = π 2 I\left( b \right) =\int _{ 0 }^{ \infty }{ \frac { sin(ax) }{ x } { e }^{ -bx } } dx\\ Differentiate\quad with\quad respect\quad to\quad b\\ I^{ ' }\left( b \right) =\int _{ 0 }^{ \infty }{ -sin(ax){ e }^{ -bx } } dx\\ sin(ax)\quad can\quad be\quad written\quad as\quad Im\{ { e }^{ iax }\} \quad (Imaginary\quad part\quad of\quad { e }^{ iax })\\ I^{ ' }\left( b \right) =Im\{ \int _{ 0 }^{ \infty }{ -{ e }^{ -(b-ia)x } } dx\} \\ I^{ ' }\left( b \right) =Im\{ \frac { 1 }{ b-ia } [{ e }^{ (b-ia)(-\infty ) }-{ e }^{ (b-ia)(0) }]\} \\ I^{ ' }\left( b \right) =Im\{ \frac { -1 }{ b-ia } \} \\ Multiplying\quad and\quad dividing\quad by\quad (b+ia)\quad we\quad get:\\ I^{ ' }\left( b \right) =Im\{ \frac { -b-ia }{ { b }^{ 2 }+{ a }^{ 2 } } \} \\ Taking\quad only\quad the\quad imaginary\quad part,\quad we\quad get\\ I^{ ' }\left( b \right) =\frac { -a }{ { b }^{ 2 }+{ a }^{ 2 } } \\ Integrating\quad both\quad sides\quad with\quad respect\quad to\quad b\\ I\left( b \right) =\int { \frac { -a }{ { b }^{ 2 }+{ a }^{ 2 } } db } \\ I\left( b \right) =-{ tan }^{ -1 }(\cfrac { b }{ a } )\quad +c\\ Since\quad I(\infty )=0\\ c=\frac { \pi }{ 2 } \\ Inserting\quad b=0\quad and\quad a=1729\quad back\quad into\quad the\quad equation:\\ I(0)=-{ tan }^{ -1 }(\cfrac { 0 }{ 1729 } )+\frac { \pi }{ 2 } =\boxed{\frac { \pi }{ 2 }} Note: I'm still familiarizing myself with this new method of differentiating under the integral. If I've gone wrong somewhere, please do point it out.

That was a really wonderful method,,, the standard method is this http://bado-shanai.net/The%20Table%20of%20Integrals/intRemovSing.htm

but yours is much much better and simple

Mvs Saketh - 6 years, 6 months ago

Awesome method. well done

Anish Kelkar - 6 years, 5 months ago

It is wonderful!!! can't even imagine of this!

Bhargav Upadhyay - 6 years, 3 months ago

Isn't this Feynman's method?

Specler X - 3 years, 6 months ago

Yes it is.

Anish Kelkar - 1 year ago
Kishore S. Shenoy
Oct 27, 2015

This all easy, I = 0 sin ( 1729 x ) x d x I=\int_{0}^{\infty} \dfrac{\sin(1729x)}{x} \, dx

Now, let y = 1729 x y=1729x . So, d x = d y 1729 dx = \dfrac{dy}{1729} and 1 x = 1729 y \dfrac1x = \dfrac{1729}y

So I = 0 sin ( 1729 x ) x d x = 0 1729 sin y y d y 1729 = 0 sin y y d y \begin{aligned}I&= \int_{0}^{\infty} \dfrac{\sin(1729x)}{x} \, dx\\&=\int_{0}^{\infty} \dfrac{1729\sin y}{y} \, \dfrac{dy}{1729}\\&=\int_{0}^{\infty} \dfrac{\sin y}{y} \, dy\end{aligned}

Now use Dirichlet Integral 0 sin ω ω d ω = π 2 \int_{0}^{\infty} \dfrac{\sin\omega}{\omega} \, d\omega = \dfrac\pi2

So I = 0 sin ( 1729 x ) x d x = π 2 I = \int_{0}^{\infty} \dfrac{\sin(1729x)}{x} \, dx = \dfrac\pi2


Proof for Dirichlet Integral, I ( a , x ) = 0 e a x sin x x d x d I d a = 0 a e a x sin x x d x = 0 a e a x e i x d x = 1 a + i = a i a 2 + 1 = 1 a 2 + 1 I = 1 a 2 + 1 = tan 1 a + c Now, I ( , x ) = 0 0 = tan 1 ( ) + c c = π 2 0 sin ω ω d ω = I ( 0 , x ) = π 2 \begin{aligned}I(a,x) &=\int_{0}^{\infty}e^{-ax}\dfrac{\sin x}xdx\\\dfrac{dI}{da}&= \int_{0}^{\infty}\dfrac\partial{\partial a}e^{-ax}\dfrac{\sin x}xdx\\&=-\Im \int_{0}^{\infty}\dfrac\partial{\partial a}e^{-ax}e^{ix}dx\\&=\Im\dfrac1{-a+i}\\&=\Im\dfrac{-a-i}{a^2+1}\\&=\dfrac{-1}{a^2+1}\\\Rightarrow I &= \int \dfrac{-1}{a^2+1}\\&=-\tan^{-1}a+c\\\\\text{Now, }I(\infty,x)&= 0\\\Rightarrow 0&=-\tan^{-1}(\infty) + c \\\Rightarrow c &= \dfrac\pi2 \\\\\therefore \int_{0}^{\infty} \dfrac{\sin\omega}{\omega} \, d\omega &= I(0,x)= \Large\boxed{\dfrac\pi2}\end{aligned}

Moderator note:

Of course, this problem is all about sin x x d x \int \frac{ \sin x } { x } \, dx , and knowing ways of approaching it.

Ramiel To-ong
Jan 8, 2016

Dirichlet Integral method is nice

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...