Differentiate yourself in trigonometry

Calculus Level 3

y = cos ( x ) ln ( sin ( x ) + 1 cos ( x ) ) y = \cos(x) \cdot \ln \left(\frac{\sin(x)+1}{\cos(x)} \right)

Find the value of the constant a a , if y + y = a tan ( x ) y + y'' = a \tan(x) .


Note : By y y'' we mean the 'second derivative' of y y .

Image Credit: Wikimedia Benjamin D. Esham


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 21, 2018

y = cos x ln ( sin x + 1 cos x ) = cos x ln ( tan x + sec x ) y = sin x ln ( tan x + sec x ) + cos x sec 2 x + sec x tan x tan x + sec x = y tan x + cos x sec x y = 1 y tan x y = y tan x y sec 2 x = ( 1 y tan x ) tan x y y tan 2 x = tan x + y tan 2 x y y tan 2 x y + y = tan x \begin{aligned} y & = \cos x \ln\left(\frac {\sin x+1}{\cos x}\right) \\ & = \cos x \ln (\tan x + \sec x) \\ y' & = - \sin x \ln (\tan x + \sec x) + \cos x \cdot \frac {\sec^2 x + \sec x \tan x}{\tan x + \sec x} \\ & = - y \tan x + \cos x \cdot \sec x \\ \implies y' & = 1 - y \tan x \\ \implies y'' & = - y' \tan x - y \sec^2 x \\ & = - (1-y\tan x) \tan x - y - y \tan^2 x \\ & = - \tan x + y \tan^2 x - y - y\tan^2 x \\ y + y'' & = - \tan x \end{aligned}

Therefore, a = 1 a = \boxed{-1} .

Will McGlaughlin
Apr 24, 2018
  • y = c o s ( x ) × l n ( t a n ( x ) + s e c ( x ) ) y=cos(x) \times ln(tan(x) + sec(x))
  • y = s i n ( x ) × l n ( t a n ( x ) + s e c ( x ) ) y'=-sin(x) \times ln(tan(x) + sec(x)) + c o s ( x ) cos(x) × s e c 2 ( x ) + t a n ( x ) s e c ( x ) s e c ( x ) + t a n ( x ) \times \frac{sec^{2}(x)+tan(x)sec(x)}{sec(x)+tan(x)}
  • y = s i n ( x ) × l n ( t a n ( x ) + s e c ( x ) ) + 1 y'=-sin(x) \times ln(tan(x) + sec(x)) + 1
  • y = c o s ( x ) × l n ( t a n ( x ) + s e c ( x ) ) s i n ( x ) × s e c ( x ) y''=-cos(x) \times ln(tan(x) + sec(x))-sin(x) \times sec(x)
  • y + y = c o s ( x ) × l n ( t a n ( x ) + s e c ( x ) ) c o s ( x ) × l n ( t a n ( x ) + s e c ( x ) ) s i n ( x ) × s e c ( x ) y' + y'' = cos(x) \times ln(tan(x) + sec(x)) - cos(x) \times ln(tan(x) + sec(x))-sin(x) \times sec(x)
  • = t a n ( x ) -tan(x)
  • a = 1 a = \boxed{-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...