Differentiating an Infinite Tetration

Calculus Level 4

Let f : [ e e , e 1 / e ] [ e 1 , e ] f: [e^{-e}, e^{1/e}] \mapsto [e^{-1},e] be defined as f ( x ) = x x x . . . f(x) = x^{x^{x^{.^{.^{.}}}}} .

If f ( 2 ) = a b c ln d f'(\sqrt{2}) = \dfrac{a\sqrt{b}}{c-\ln{d}} for positive integers a a , b b , c c and d d where b b is square-free and d d is a prime number, find a + b + c + d a+b+c+d .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 15, 2017

f ( x ) = x x x Let y = f ( x ) y = x y ln y = y ln x Differentiate both sides w.r.t. x 1 y d y d x = ln x d y d x + y x f ( x ) f ( x ) = ln x f ( x ) + f ( x ) x Put x = 2 f ( 2 ) f ( 2 ) = ln 2 f ( 2 ) + f ( 2 ) 2 Note that f ( 2 ) = 2 f ( 2 ) 2 = ln 2 2 f ( 2 ) + 2 2 f ( 2 ) = 2 2 1 ln 2 \begin{aligned} \color{#3D99F6}f(x) & = x^{x^{x^{\cdot^{\cdot^{\cdot}}}}} & \small \color{#3D99F6} \text{Let }y = f(x) \\ \color{#3D99F6} y & = x^y \\ \ln y & = y \ln x & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ \frac 1y \cdot \frac {dy}{dx} & = \ln x \cdot \frac {dy}{dx} + \frac yx \\ \frac {f'(x)}{f(x)} & = \ln x f'(x) + \frac {f(x)}x & \small \color{#3D99F6} \text{Put }x=\sqrt 2 \\ \frac {f'(\sqrt 2)}{\color{#3D99F6}f(\sqrt 2)} & = \ln \sqrt 2 f'(\sqrt 2) + \frac {\color{#3D99F6}f(\sqrt 2)}{\sqrt 2} & \small \color{#3D99F6} \text{Note that } f(\sqrt 2) = 2 \\ \frac {f'(\sqrt 2)}{\color{#3D99F6}2} & = \frac {\ln 2}2 \cdot f'(\sqrt 2) + \frac {\color{#3D99F6}2}{\sqrt 2} \\ \implies f'(\sqrt 2) & = \frac {2\sqrt 2}{1-\ln 2} \end{aligned}

a + b + c + d = 2 + 2 + 1 + 2 = 7 \implies a+b+c+d = 2+2+1+2 = \boxed{7}

Akeel Howell
Jul 15, 2017

Since f ( x ) = x x x . . . f(x) = \Large x^{x^{x^{.^{.^{.}}}}} , we can rewrite f f as f ( x ) = x f ( x ) ln f ( x ) = f ( x ) ln x f(x) = x^{f(x)} \implies \ln{f(x)} = f(x)\ln x .

Differentiating both sides of this equation yields f ( x ) f ( x ) = f ( x ) x + f ( x ) ln x f ( x ) = ( f ( x ) ) 2 x ( 1 f ( x ) ln x ) \dfrac{f'(x)}{f(x)} = \dfrac{f(x)}{x} + f'(x) \ln x \implies f'(x) = \dfrac{(f(x))^2}{x(1-f(x)\ln x)} .

f ( 2 ) = 2 f ( 2 ) 2 a = a a { 2 , 4 } f(\sqrt{2}) = \sqrt{2}^{f(\sqrt{2})} \implies \sqrt{2}^a = a \longrightarrow a \in \{2,4\} . Since f f is a continuous function on interval [ e e , e 1 / e ] [e^{-e},e^{1/e}] with a maximum at ( e 1 / e , e ) (e^{1/e},e) , we see that f ( 2 ) = 2 f(\sqrt{2}) = 2 .

Therefore, evaluating f f' at x = 2 x = \sqrt{2} yields 2 2 1 ln 2 \dfrac{2\sqrt{2}}{1-\ln 2} and thus, a + b + c + d = 2 + 2 + 1 + 2 = 7 a+b+c+d = 2+2+1+2 = \boxed{7} .

Zach Abueg
Jul 15, 2017

y = x x x If lim n x x x n times exists, it is solution to y = x y y = x y ln y = y ln x Differentiate both sides 1 y d y d x = d y d x ln x + y x Isolate d y d x d y d x ( 1 y ln x ) = y x d y d x = y x ( 1 y ln x ) y = x x x d y d x = x x x x ( 1 x x x ln x ) 2 2 2 = 2 d y d x x = 2 = 2 2 ( 1 2 ln 2 ) = 2 2 1 ln 2 \displaystyle \begin{aligned} y & = x^{x^{x^{\cdot^{\cdot^{\cdot}}}}} & \small \color{#3D99F6} \text{If } \lim_{n \ \to \ \infty} \underbrace{x^{x^{\cdot ^{\cdot ^{x}}}}}_{\text{n times}} \text{ exists, it is solution to } y = x^y \\ y & = x^{\color{#3D99F6}{y}} \\ \ln y & = y\ln x & \small \color{#3D99F6} \text{Differentiate both sides} \\ \frac{1}{y} \cdot \frac{dy}{dx} & = \frac{dy}{dx} \cdot \ln x + \frac yx & \small \color{#3D99F6} \text{Isolate } \frac{dy}{dx} \\ \frac{dy}{dx} \left(\frac 1y - \ln x \right) & = \frac yx \\ \implies \frac{dy}{dx} & = \frac{y}{x\left( \displaystyle \frac 1y - \ln x\right)} & \small \color{#3D99F6} y = x^{x^{x^{\cdot^{\cdot^{\cdot}}}}} \\ \implies \frac{dy}{dx} & = \frac{{\color{#3D99F6}{x^{x^{x^{\cdot^{\cdot^{\cdot}}}}}}}}{x\Bigg( \displaystyle \frac {1}{{\color{#3D99F6}{x^{x^{x^{\cdot^{\cdot^{\cdot}}}}}}}} - \ln x\Bigg)} & \small \color{#3D99F6} \sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\cdot^{\cdot^{\cdot}}}}} = 2 \\ \implies \frac{dy}{dx} \bigg|_{x \ = \ \sqrt{2}} & = \frac{{\color{#3D99F6}{2}}}{\sqrt{2}\left(\frac {1}{{\color{#3D99F6}{2}}} - \ln \sqrt{2} \right)} \\ & = \frac{2\sqrt{2}}{1 - \ln 2} \end{aligned}

a + b + c + d = 7 \displaystyle \implies a + b + c + d = \boxed{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...