Suppose A = d x d y of x 2 + y 2 = 4 at ( 2 , 2 ) , B = d x d y of sin y + sin x = sin x . sin y at ( π , π ) and C = d x d y of 2 e x y + e x e y − e x − e y = e x y + 1 at ( 1 , 1 ) , then ( A + B + C ) has a value equal to
For set , click here
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution Sir , Upvoted @Prakhar Gupta
Did in the same way.
A can be easily visualised as − 1 by tangent to a circle as in the equation....
Problem Loading...
Note Loading...
Set Loading...
To Calculate A :- x 2 + y 2 = 4 Differentiating w.r.t. x we get:- 2 x + 2 y d x d y = 0 Put ( 2 , 2 ) in above equation:- 2 + 2 A = 0 ⟹ A = − 1 To Calculate B :- sin x + sin y = sin x . sin y It can be written as :- ( sin x − 1 ) ( sin y − 1 ) = 1 Differentiating w.r.t. x we get:- cos x ( sin y − 1 ) + cos y ( sin x − 1 ) d x d y = 0 Put ( π , π ) in above equation we get:- ( − 1 ) ( 0 − 1 ) + ( − 1 ) ( − 1 ) B = 0 ⟹ B = − 1 To calculate C :- 2 e x y + e x e y − e x − e y = e x y + 1 Above equation can be rewritten as :- e x y ( 2 − e ) + ( e x − 1 ) ( e y − 1 ) = 1 Differentiating w.r.t. x we get:- ( 2 − e ) e x y ( y + x d x d y ) + e x ( e y − 1 ) + e y ( e x − 1 ) d x d y = 0 Put ( 1 , 1 ) in the above equation:- ( 2 − e ) e ( 1 + C ) + e ( e − 1 ) + e ( e − 1 ) C = 0 ⟹ C = − 1 ∴ ( A + B + C ) = − 3