Differentiation 1

Calculus Level 4

Suppose A = d y d x A=\frac { dy }{ dx } of x 2 + y 2 = 4 { x }^{ 2 }+{ y }^{ 2 }=4 at ( 2 , 2 ) , B = d y d x \left( \sqrt { 2 } ,\sqrt { 2 } \right) ,B=\frac { dy }{ dx } of sin y + sin x = sin x . sin y \sin { y } +\sin { x } =\sin { x } .\sin { y } at ( π , π ) \left( \pi ,\pi \right) and C = d y d x C=\frac { dy }{ dx } of 2 e x y + e x e y e x e y = e x y + 1 { 2e }^{ xy }+{ e }^{ x }{ e }^{ y }-{ e }^{ x }-{ e }^{ y }={ e }^{ xy+1 } at ( 1 , 1 ) \left( 1,1 \right) , then ( A + B + C ) (A+B+C) has a value equal to

For set , click here


The answer is -3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prakhar Gupta
Mar 20, 2015

To Calculate A A :- x 2 + y 2 = 4 x^{2} + y^{2} = 4 Differentiating w.r.t. x x we get:- 2 x + 2 y d y d x = 0 2x + 2y \dfrac{dy}{dx}=0 Put ( 2 , 2 ) (\sqrt{2},\sqrt{2}) in above equation:- 2 + 2 A = 0 \sqrt{2} +\sqrt{2}A=0 A = 1 \implies A = -1 To Calculate B B :- sin x + sin y = sin x . sin y \sin x + \sin y = \sin x .\sin y It can be written as :- ( sin x 1 ) ( sin y 1 ) = 1 (\sin x-1) (\sin y -1 )= 1 Differentiating w.r.t. x x we get:- cos x ( sin y 1 ) + cos y ( sin x 1 ) d y d x = 0 \cos x(\sin y-1) + \cos y(\sin x -1) \dfrac{dy}{dx} = 0 Put ( π , π ) (\pi,\pi) in above equation we get:- ( 1 ) ( 0 1 ) + ( 1 ) ( 1 ) B = 0 (-1) (0-1) + (-1) (-1) B =0 B = 1 \implies B = -1 To calculate C C :- 2 e x y + e x e y e x e y = e x y + 1 2e^{xy} + e^{x} e^{y} - e^{x} - e^{y}= e^{xy+1} Above equation can be rewritten as :- e x y ( 2 e ) + ( e x 1 ) ( e y 1 ) = 1 e^{xy}(2-e) + (e^{x} -1)(e^{y} -1) =1 Differentiating w.r.t. x x we get:- ( 2 e ) e x y ( y + x d y d x ) + e x ( e y 1 ) + e y ( e x 1 ) d y d x = 0 (2-e)e^{xy}(y + x\dfrac{dy}{dx} ) + e^{x}(e^{y}-1) + e^{y} (e^{x} -1)\dfrac{dy}{dx} = 0 Put ( 1 , 1 ) (1,1) in the above equation:- ( 2 e ) e ( 1 + C ) + e ( e 1 ) + e ( e 1 ) C = 0 (2-e)e(1+C) + e(e-1) + e(e-1)C =0 C = 1 \implies C=-1 ( A + B + C ) = 3 \therefore (A+B+C) = -3

Nice solution Sir , Upvoted @Prakhar Gupta

Utkarsh Bansal - 6 years, 2 months ago

Log in to reply

try this integration .

Gaurav Jain - 6 years, 1 month ago

Did in the same way.

Divyansh Chaturvedi - 6 years ago
Kislay Raj
May 2, 2015

A A can be easily visualised as 1 -1 by tangent to a circle as in the equation....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...