Differentiation Aggravation

Calculus Level 5

f ( x , y ) = { x 2 y 2 x 2 + y 2 if ( x , y ) ( 0 , 0 ) 0 if ( x , y ) = ( 0 , 0 ) g ( x , y ) = { x y x 2 + y 2 if ( x , y ) ( 0 , 0 ) 0 if ( x , y ) = ( 0 , 0 ) f(x,y) = \begin{cases} \dfrac{x^2y^2}{x^2+y^2} & \text{ if } (x,y)\neq(0,0) \\ \; \; \; \; \; 0 & \text{ if } (x,y)=(0,0) \end{cases} \\ g(x,y) = \begin{cases} \dfrac{xy}{x^2+y^2} & \text{ if } (x,y)\neq(0,0) \\ \; \; \; \; \; 0 & \text{ if } (x,y)=(0,0) \end{cases}

Consider the functions f , g : R 2 R f,g : \mathbb{R}^2 \to \mathbb{R} as described above.

Are these functions differentiable at ( x , y ) = ( 0 , 0 ) (x,y) = (0,0) ?

Only f f None of them are differentiable at ( x , y ) = ( 0 , 0 ) (x,y)=(0,0) Both f f and g g Only g g

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

If h ( x , y ) h(x,y) is differentiable at ( x 0 , y 0 ) (x_0, y_0) , then both h x ( x 0 , y 0 ) \frac{\partial h}{\partial x} (x_0, y_0) and h y ( x 0 , y 0 ) \frac{\partial h}{\partial y} (x_0, y_0) exist, such that

h ( x 0 + Δ x , y 0 + Δ y ) = h ( x 0 , y 0 ) + h x ( x 0 , y 0 ) Δ x + h y ( x 0 , y 0 ) Δ y + R h ( Δ x , Δ y ) h(x_0 +\Delta x, y_0 + \Delta y ) = h(x_0, y_0) + \frac{\partial h}{\partial x} (x_0, y_0) \cdot \Delta x + \frac{\partial h}{\partial y} (x_0, y_0) \cdot \Delta y + R_h(\Delta x , \Delta y ) lim ( Δ x , Δ y ) ( 0 , 0 ) R h ( Δ x , Δ y ) ( Δ x , Δ y ) = 0. \lim_{(\Delta x, \Delta y) \to (0,0)} \dfrac{R_h(\Delta x, \Delta y)}{\left \| (\Delta x, \Delta y) \right \|} = 0.

We can show that lim ( Δ x , Δ y ) ( 0 , 0 ) R f ( Δ x , Δ y ) ( Δ x , Δ y ) = 0 \displaystyle \lim_{(\Delta x, \Delta y) \to (0,0)} \dfrac{R_f(\Delta x, \Delta y)}{\left \| (\Delta x, \Delta y) \right \|} = 0 , but lim ( Δ x , Δ y ) ( 0 , 0 ) R g ( Δ x , Δ y ) ( Δ x , Δ y ) \displaystyle \lim_{(\Delta x, \Delta y) \to (0,0)} \dfrac{R_g(\Delta x, \Delta y)}{\left \| (\Delta x, \Delta y) \right \|} is indeterminate, and thus g g is not differentiable at ( 0 , 0 ) (0,0) .

Can you add the details of the final "We can show that"? It feels like you're building up the theory to help someone understand, but not completing the final step for them to see why we reach that conclusion.

Calvin Lin Staff - 4 years, 5 months ago

Log in to reply

It is easy to calculate and see that f x ( 0 , 0 ) = f y ( 0 , 0 ) = g x ( 0 , 0 ) = g y ( 0 , 0 ) = 0 \frac{\partial f}{\partial x} (0,0) = \frac{\partial f}{\partial y} (0,0) = \frac{\partial g}{\partial x} (0,0) = \frac{\partial g}{\partial y} (0,0) = 0 .

Thus, we see that R f ( Δ x , Δ y ) = ( Δ x ) 2 ( Δ y ) 2 ( Δ x ) 2 + ( Δ y ) 2 R_f (\Delta x, \Delta y) = \dfrac{(\Delta x)^2(\Delta y)^2}{(\Delta x)^2+(\Delta y)^2} and R g ( Δ x , Δ y ) = Δ x Δ y ( Δ x ) 2 + ( Δ y ) 2 R_g (\Delta x, \Delta y) = \dfrac{\Delta x \Delta y}{(\Delta x)^2+(\Delta y)^2} .

First, let's prove that lim ( Δ x , Δ y ) ( 0 , 0 ) R f ( Δ x , Δ y ) ( Δ x , Δ y ) = 0 \displaystyle \lim_{(\Delta x, \Delta y) \to (0,0)} \dfrac{R_f(\Delta x, \Delta y)}{\left \| (\Delta x, \Delta y) \right \|} = 0 , where R f ( Δ x , Δ y ) ( Δ x , Δ y ) = ( Δ x ) 2 ( Δ y ) 2 ( ( Δ x ) 2 + ( Δ y ) 2 ) 3 2 \dfrac{R_f(\Delta x, \Delta y)}{\left \| (\Delta x, \Delta y) \right \|} = \dfrac{(\Delta x)^2(\Delta y)^2}{((\Delta x)^2+(\Delta y)^2)^{\frac{3}{2}}} .

0 ( Δ x ) 2 ( Δ y ) 2 ( ( Δ x ) 2 + ( Δ y ) 2 ) 3 2 ( Δ x ) 2 ( Δ y ) 2 ( ( Δ x ) 2 + ( Δ y ) 2 ) 3 2 + 1 2 ( Δ x ) 4 + ( Δ y ) 4 ( ( Δ x ) 2 + ( Δ y ) 2 ) 3 2 = ( Δ x ) 2 + ( Δ y ) 2 2 0 \leq \dfrac{(\Delta x)^2(\Delta y)^2}{((\Delta x)^2+(\Delta y)^2)^{\frac{3}{2}}}\leq \dfrac{(\Delta x)^2(\Delta y)^2}{((\Delta x)^2+(\Delta y)^2)^{\frac{3}{2}}} + {\color{#456461} \frac{1}{2} \cdot \dfrac{(\Delta x)^4+(\Delta y)^4}{((\Delta x)^2+(\Delta y)^2)^{\frac{3}{2}}}} = \frac{\sqrt{(\Delta x)^2+(\Delta y)^2}}{2} \Rightarrow

lim ( Δ x , Δ y ) ( 0 , 0 ) 0 lim ( Δ x , Δ y ) ( 0 , 0 ) R f ( Δ x , Δ y ) ( Δ x , Δ y ) lim ( Δ x , Δ y ) ( 0 , 0 ) ( Δ x ) 2 + ( Δ y ) 2 \Rightarrow \lim_{(\Delta x, \Delta y) \to (0,0)} 0 \leq \lim_{(\Delta x, \Delta y) \to (0,0)} \dfrac{R_f(\Delta x, \Delta y)}{\left \| (\Delta x, \Delta y) \right \|} \leq \lim_{(\Delta x, \Delta y) \to (0,0)} \sqrt{(\Delta x)^2+(\Delta y)^2}

Through Squeeze Theorem , lim ( Δ x , Δ y ) ( 0 , 0 ) R f ( Δ x , Δ y ) ( Δ x , Δ y ) = 0 \displaystyle \lim_{(\Delta x, \Delta y) \to (0,0)} \dfrac{R_f(\Delta x, \Delta y)}{\left \| (\Delta x, \Delta y) \right \|} = 0 . Because of this, f f is differentiable at ( 0 , 0 ) (0,0) .

Now we will show that lim ( Δ x , Δ y ) ( 0 , 0 ) R g ( Δ x , Δ y ) ( Δ x , Δ y ) = lim ( Δ x , Δ y ) ( 0 , 0 ) Δ x Δ y ( ( Δ x ) 2 + ( Δ y ) 2 ) 3 2 0 \displaystyle \lim_{(\Delta x, \Delta y) \to (0,0)} \dfrac{R_g(\Delta x, \Delta y)}{\left \| (\Delta x, \Delta y) \right \|} = \lim_{(\Delta x, \Delta y) \to (0,0)} \dfrac{\Delta x\Delta y}{((\Delta x)^2+(\Delta y)^2)^{\frac{3}{2}}} \neq 0 .

Let Δ x = Δ y \Delta x = \Delta y . From this approach, we see that lim ( Δ x , Δ y ) ( 0 , 0 ) Δ x Δ y ( ( Δ x ) 2 + ( Δ y ) 2 ) 3 2 = lim Δ x 0 ( Δ x ) 2 2 2 Δ x 3 = lim Δ x 0 1 2 2 Δ x . \displaystyle \lim_{(\Delta x, \Delta y) \to (0,0)} \dfrac{\Delta x\Delta y}{((\Delta x)^2+(\Delta y)^2)^{\frac{3}{2}}} = \lim_{\Delta x \to 0} \dfrac{(\Delta x)^2}{2\sqrt{2} \cdot \left | \Delta x \right |^3} = \lim_{\Delta x \to 0} \dfrac{1}{2\sqrt{2} \cdot |\Delta x|} .

However, lim Δ x 0 1 2 2 Δ x = + \displaystyle \lim_{\Delta x \to 0} \dfrac{1}{2\sqrt{2} \cdot |\Delta x|} = +\infty , not 0 0 .

Thus we have shown that lim ( Δ x , Δ y ) ( 0 , 0 ) R g ( Δ x , Δ y ) ( Δ x , Δ y ) 0 \displaystyle \lim_{(\Delta x, \Delta y) \to (0,0)} \dfrac{R_g(\Delta x, \Delta y)}{\left \| (\Delta x, \Delta y) \right \|} \neq 0 . Because of this, g g is not differentiable at ( 0 , 0 ) (0,0) .

Guilherme Dela Corte - 4 years, 5 months ago

A function h ( x , y ) h(x,y) is differentiable at ( x 0 , y 0 ) (x_{0},y_{0}) iif: lim ( x , y ) ( x 0 , y 0 ) h ( x , y ) h ( x 0 , y 0 ) h x ( x 0 , y 0 ) x h y ( x 0 , y 0 ) y ( x + x 0 , y + y 0 ) = 0 \lim_{(x,y)\to(x_{0},y_{0})}\frac{h(x,y)-h(x_{0},y_{0})-\frac{\partial h}{\partial x} (x_{0},y_{0}) \cdot x - \frac{\partial h}{\partial y}(x_{0},y_{0}) \cdot y}{||(x+x_{0},y+y_{0})||}=0 Then, we find the following values: f x ( 0 , 0 ) = lim h 0 f ( h , 0 ) f ( 0 , 0 ) h = lim h 0 0 h = 0 = f y ( 0 , 0 ) = g x ( 0 , 0 ) = g y ( 0 , 0 ) \frac{\partial f}{\partial x} (0,0)=\lim_{h\to 0} \frac{f(h,0)-f(0,0)}{h}=\lim_{h\to 0} \frac{0}{h}=0=\frac{\partial f}{\partial y}(0,0)=\frac{\partial g}{\partial x}(0,0) =\frac{\partial g}{\partial y}(0,0) So, replacing in the definition above, we have: lim ( x , y ) ( 0 , 0 ) x 2 y 2 ( x 2 + y 2 ) 3 2 = lim r 0 θ f r e e r 4 1 2 sin ( 2 θ ) r 3 = 0 \lim_{(x,y)\to (0,0)}\frac{x^2 y^2}{(x^2+y^2)^\frac{3}{2}}=\lim_{r\to 0 \wedge \theta free} \frac{r^4\cdot \frac{1}{2} \sin(2\theta)}{r^3}=0 f ( x , y ) \Rightarrow f(x,y) is differentiable at ( 0 , 0 ) (0,0) lim ( x , y ) ( 0 , 0 ) x y ( x 2 + y 2 ) 3 2 = lim r 0 θ f r e e r 2 1 2 sin ( 2 θ ) r 3 \lim_{(x,y)\to (0,0)}\frac{xy}{(x^2+y^2)^\frac{3}{2}}=\lim_{r\to 0 \wedge \theta free} \frac{r^2 \cdot \frac{1}{2} \sin(2\theta)}{r^3} Which depends on the value of θ \theta , so doesn't exist. g ( x , y ) \Rightarrow g(x,y) is not differentiable at ( 0 , 0 ) (0,0)

Can you explain what does the limit r 0 θ f r e e r \rightarrow 0\wedge \theta free means?

Calvin Lin Staff - 4 years, 5 months ago

Log in to reply

Sorry, is a polar change of variables, with r 0 r \to 0 and with a free θ \theta , this is, θ \theta can take any real value

Hjalmar Orellana Soto - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...