f ( x , y ) = ⎩ ⎨ ⎧ x 2 + y 2 x 2 y 2 0 if ( x , y ) = ( 0 , 0 ) if ( x , y ) = ( 0 , 0 ) g ( x , y ) = ⎩ ⎨ ⎧ x 2 + y 2 x y 0 if ( x , y ) = ( 0 , 0 ) if ( x , y ) = ( 0 , 0 )
Consider the functions f , g : R 2 → R as described above.
Are these functions differentiable at ( x , y ) = ( 0 , 0 ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Can you add the details of the final "We can show that"? It feels like you're building up the theory to help someone understand, but not completing the final step for them to see why we reach that conclusion.
Log in to reply
It is easy to calculate and see that ∂ x ∂ f ( 0 , 0 ) = ∂ y ∂ f ( 0 , 0 ) = ∂ x ∂ g ( 0 , 0 ) = ∂ y ∂ g ( 0 , 0 ) = 0 .
Thus, we see that R f ( Δ x , Δ y ) = ( Δ x ) 2 + ( Δ y ) 2 ( Δ x ) 2 ( Δ y ) 2 and R g ( Δ x , Δ y ) = ( Δ x ) 2 + ( Δ y ) 2 Δ x Δ y .
First, let's prove that ( Δ x , Δ y ) → ( 0 , 0 ) lim ∥ ( Δ x , Δ y ) ∥ R f ( Δ x , Δ y ) = 0 , where ∥ ( Δ x , Δ y ) ∥ R f ( Δ x , Δ y ) = ( ( Δ x ) 2 + ( Δ y ) 2 ) 2 3 ( Δ x ) 2 ( Δ y ) 2 .
0 ≤ ( ( Δ x ) 2 + ( Δ y ) 2 ) 2 3 ( Δ x ) 2 ( Δ y ) 2 ≤ ( ( Δ x ) 2 + ( Δ y ) 2 ) 2 3 ( Δ x ) 2 ( Δ y ) 2 + 2 1 ⋅ ( ( Δ x ) 2 + ( Δ y ) 2 ) 2 3 ( Δ x ) 4 + ( Δ y ) 4 = 2 ( Δ x ) 2 + ( Δ y ) 2 ⇒
⇒ ( Δ x , Δ y ) → ( 0 , 0 ) lim 0 ≤ ( Δ x , Δ y ) → ( 0 , 0 ) lim ∥ ( Δ x , Δ y ) ∥ R f ( Δ x , Δ y ) ≤ ( Δ x , Δ y ) → ( 0 , 0 ) lim ( Δ x ) 2 + ( Δ y ) 2
Through Squeeze Theorem , ( Δ x , Δ y ) → ( 0 , 0 ) lim ∥ ( Δ x , Δ y ) ∥ R f ( Δ x , Δ y ) = 0 . Because of this, f is differentiable at ( 0 , 0 ) .
Now we will show that ( Δ x , Δ y ) → ( 0 , 0 ) lim ∥ ( Δ x , Δ y ) ∥ R g ( Δ x , Δ y ) = ( Δ x , Δ y ) → ( 0 , 0 ) lim ( ( Δ x ) 2 + ( Δ y ) 2 ) 2 3 Δ x Δ y = 0 .
Let Δ x = Δ y . From this approach, we see that ( Δ x , Δ y ) → ( 0 , 0 ) lim ( ( Δ x ) 2 + ( Δ y ) 2 ) 2 3 Δ x Δ y = Δ x → 0 lim 2 2 ⋅ ∣ Δ x ∣ 3 ( Δ x ) 2 = Δ x → 0 lim 2 2 ⋅ ∣ Δ x ∣ 1 .
However, Δ x → 0 lim 2 2 ⋅ ∣ Δ x ∣ 1 = + ∞ , not 0 .
Thus we have shown that ( Δ x , Δ y ) → ( 0 , 0 ) lim ∥ ( Δ x , Δ y ) ∥ R g ( Δ x , Δ y ) = 0 . Because of this, g is not differentiable at ( 0 , 0 ) .
A function h ( x , y ) is differentiable at ( x 0 , y 0 ) iif: ( x , y ) → ( x 0 , y 0 ) lim ∣ ∣ ( x + x 0 , y + y 0 ) ∣ ∣ h ( x , y ) − h ( x 0 , y 0 ) − ∂ x ∂ h ( x 0 , y 0 ) ⋅ x − ∂ y ∂ h ( x 0 , y 0 ) ⋅ y = 0 Then, we find the following values: ∂ x ∂ f ( 0 , 0 ) = h → 0 lim h f ( h , 0 ) − f ( 0 , 0 ) = h → 0 lim h 0 = 0 = ∂ y ∂ f ( 0 , 0 ) = ∂ x ∂ g ( 0 , 0 ) = ∂ y ∂ g ( 0 , 0 ) So, replacing in the definition above, we have: ( x , y ) → ( 0 , 0 ) lim ( x 2 + y 2 ) 2 3 x 2 y 2 = r → 0 ∧ θ f r e e lim r 3 r 4 ⋅ 2 1 sin ( 2 θ ) = 0 ⇒ f ( x , y ) is differentiable at ( 0 , 0 ) ( x , y ) → ( 0 , 0 ) lim ( x 2 + y 2 ) 2 3 x y = r → 0 ∧ θ f r e e lim r 3 r 2 ⋅ 2 1 sin ( 2 θ ) Which depends on the value of θ , so doesn't exist. ⇒ g ( x , y ) is not differentiable at ( 0 , 0 )
Can you explain what does the limit r → 0 ∧ θ f r e e means?
Log in to reply
Sorry, is a polar change of variables, with r → 0 and with a free θ , this is, θ can take any real value
Problem Loading...
Note Loading...
Set Loading...
If h ( x , y ) is differentiable at ( x 0 , y 0 ) , then both ∂ x ∂ h ( x 0 , y 0 ) and ∂ y ∂ h ( x 0 , y 0 ) exist, such that
h ( x 0 + Δ x , y 0 + Δ y ) = h ( x 0 , y 0 ) + ∂ x ∂ h ( x 0 , y 0 ) ⋅ Δ x + ∂ y ∂ h ( x 0 , y 0 ) ⋅ Δ y + R h ( Δ x , Δ y ) ( Δ x , Δ y ) → ( 0 , 0 ) lim ∥ ( Δ x , Δ y ) ∥ R h ( Δ x , Δ y ) = 0 .
We can show that ( Δ x , Δ y ) → ( 0 , 0 ) lim ∥ ( Δ x , Δ y ) ∥ R f ( Δ x , Δ y ) = 0 , but ( Δ x , Δ y ) → ( 0 , 0 ) lim ∥ ( Δ x , Δ y ) ∥ R g ( Δ x , Δ y ) is indeterminate, and thus g is not differentiable at ( 0 , 0 ) .