Differentiation and Invers become one

Calculus Level 4

F ( x ) = f ( e g ( x ) ) \large F(x)=f\left( e^{g(x)} \right)

Let F ( x ) F(x) be defined as above, where f ( x ) = x 3 + 5 x + 3 f(x)=x^3+5x+3 for 0 x 1 0 \leq x \leq 1 and g ( x ) = f 1 ( x ) g(x)=f^{-1}(x) . If the value of F ( 3 ) = a b {F}'(3)=\dfrac{a}{b} , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

F ( x ) = f ( e g ( x ) ) \large F(x)=f\left( e^{g(x)} \right)

F ( x ) = ( f ( e g ( x ) ) ) e g ( x ) g ( x ) \large F'(x)=\left(f'\left( e^{g(x)} \right) \right) e^{g(x)} g'(x)

g ( x ) = f 1 ( x ) f ( g ( x ) ) = g ( f ( x ) ) = x \large g(x)=f^{-1}(x) \Rightarrow f\left(g(x)\right)=g\left(f(x)\right)=x

g ( f ( x ) ) = x \large g\left(f(x)\right)=x

Differentiating wrt x \large x we get,

g ( f ( x ) ) f ( x ) = 1 \large g'\left(f(x)\right)f'(x)=1

g ( f ( x ) ) = 1 f ( x ) [ 1 ] \large \Rightarrow g'\left(f(x)\right)=\dfrac{1}{f'(x)} \hspace{4 mm} [1]

F ( 3 ) = ( f ( e g ( 3 ) ) ) e g ( 3 ) g ( 3 ) \large F'(3)=\left(f'\left( e^{g(3)} \right) \right) e^{g(3)} g'(3)

now its interesting to note that

f ( 0 ) = 3 g ( 3 ) = g ( f ( 0 ) ) = 0 \large f(0)=3\Rightarrow g(3)=g\left(f(0)\right)=0

from [ 1 ] \large [1] we have

g ( 3 ) = g ( f ( 0 ) ) = 1 f ( 0 ) \large g'(3)=g'\left(f(0)\right)=\dfrac{1}{f'(0)}

Substituting these values we get,

F ( 3 ) = f ( e g ( f ( 0 ) ) ) e g ( f ( 0 ) ) g ( f ( 0 ) ) = f ( e 0 ) e 0 1 f ( 0 ) = f ( 1 ) f ( 0 ) \large F'(3)=f'\left( e^{g\left( f\left( 0 \right) \right)} \right) e^{g\left( f\left( 0 \right) \right)} g'(f(0))=f'(e^0)e^0\dfrac{1}{f'(0)}=\dfrac{f'(1)}{f'(0)}

f ( x ) = 3 x + 5 f ( 1 ) f ( 0 ) = 8 5 \large f'(x)=3x+5 \Rightarrow\dfrac{f'(1)}{f'(0)}=\dfrac{8}{5}

Thus a + b = 8 + 5 = 13 \large a+b=8+5=\boxed{13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...