Differentiation of Hyperbolic Functions

Calculus Level 3

d d x 1 + tanh x 1 tanh x 4 = ? \large \dfrac{d}{dx} \sqrt[4]{\dfrac{1+\tanh x}{1-\tanh x}} = \, ?

Note: tanh \tanh is a hyperbolic function.

e x 2 \dfrac{e^x}{2} e x 2 \dfrac{\sqrt{e^x}}{2} 1 2 e x \dfrac{1}{2\sqrt{e^x}} 1 2 e x \dfrac{1}{2e^x}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 20, 2016

U s i n g tan h x = e x e x e x + e x \small{\color{forestgreen}{Using ~ \tan hx=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}}} d d x 1 + tan h x 1 tan h x 4 = d d x e x e x 4 = d d x e x 2 \dfrac{d}{dx} \sqrt[4]{\dfrac{1+\tan hx}{1-\tan hx}}=\dfrac{d}{dx} \sqrt[4]{\dfrac{e^x}{e^{-x}}}=\dfrac{d}{dx} e^{\dfrac{x}{2}} = e x 2 \color{goldenrod}{=\dfrac{\sqrt{e^x}}{2}}

would you please describe the hyperbolic function.I didn't get it.

Tanvir Hasan - 5 years, 4 months ago

Log in to reply

...I also learnt it on wiki before posting this solution, you may use wiki for learning Hyperbolic functions better..

Rishabh Jain - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...