Differentiation seems easy ?

Calculus Level 3

y = x 4 x 2 + 1 x 2 + 3 x + 1 \large{y = \frac{x^{4} - x^{2} + 1}{x^{2} + \sqrt{3}x + 1}}

d y d x = a x + b \frac{dy}{dx} = ax + b

a + b = c d a + b = c - \sqrt{d}

c + d = ? c + d =?

a , b , c , d R a , b,c,d \in R


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

(This is only a HINT \textbf{HINT} ):

x 4 x 2 + 1 x^4-x^2+1 = ( x 2 + 1 3 x ) ( x 2 + 1 + 3 x ) (x^2+1-\sqrt{3}x)(x^2+1+\sqrt{3}x)

As we share the same approach, allow me to complete your solution.

y = x 4 x 2 + 1 x 2 + 3 x + 1 = x 2 + 1 3 x \large{y = \frac{x^{4} - x^{2} + 1}{x^{2} + \sqrt{3}x + 1}} = x^2+1-\sqrt{3}x .

d d x ( x 2 + 1 3 x ) = 2 x 3 \large\frac { d }{ dx } \left( { x }^{ 2 }+1-\sqrt { 3 } x \right) =2x-\sqrt { 3 } . Therefore, c + d = 2 + 3 = 5 \large c+d=2+3=5 .

Swapnil Das - 5 years, 2 months ago
Saurabh Mallik
Dec 17, 2015

To solve this question, we first need to differentiate y y with respect to x x .

y = x 4 x 2 + 1 x 2 + 3 x + 1 y=\cfrac{x^{4}-x^{2}+1}{x^2+\sqrt{3}x+1}

d d x u v = v d u d x u d v d x v 2 \boxed{\cfrac{d}{dx} \cfrac{u}{v}=\cfrac{v\cfrac{du}{dx}-u\cfrac{dv}{dx}}{v^{2}}}

d y d x = d d x x 4 x 2 + 1 x 2 + 3 x + 1 \cfrac{dy}{dx}=\cfrac{d}{dx}\cfrac{x^{4}-x^{2}+1}{x^2+\sqrt{3}x+1}

= ( x 2 + 3 x + 1 ) d d x ( x 4 x 2 + 1 ) ( x 4 x 2 + 1 ) d d x ( x 2 + 3 x + 1 ) ( x 2 + 3 x + 1 ) 2 =\cfrac{(x^2+\sqrt{3}x+1)\cfrac{d}{dx}(x^{4}-x^{2}+1)-(x^{4}-x^{2}+1)\cfrac{d}{dx}(x^2+\sqrt{3}x+1)}{(x^2+\sqrt{3}x+1)^{2}}

= ( x 2 + 3 x + 1 ) ( 4 x 3 2 x ) ( x 4 x 2 + 1 ) ( 2 x + 3 ) ( x 2 + 3 x + 1 ) 2 =\cfrac{(x^2+\sqrt{3}x+1)(4x^{3}-2x)-(x^{4}-x^{2}+1)(2x+\sqrt{3})}{(x^2+\sqrt{3}x+1)^{2}}

= 2 x 3 =2x-\sqrt{3}

Now, given: d y d x = a x + b \cfrac{dy}{dx}=ax+b

So, 2 x 3 = a x + b 2x-\sqrt{3}=ax+b

On comparing, we get: a = 2 a=2 , b = 3 b=-\sqrt{3}

Now, a + b = c d a+b=c-\sqrt{d}

So, 2 3 = c d 2-\sqrt{3}=c-\sqrt{d}

On comparing, we get: c = 2 c=2 , d = 3 d=3

So, c + d = 5 c+d=5

Thus, the answer is: c + d = 5 \boxed{c+d=5}

Alex Burgess
Mar 21, 2019

y = a x 2 2 + b x + c = x 4 x 2 + 1 x 2 + 3 x + 1 y = \frac{ax^2}{2}+bx+c = \frac{x^4 - x^2 + 1}{x^2+\sqrt{3}x+1} .

lim x y = a x 2 2 = x 2 \lim_{x\to\infty} y = \frac{ax^2}{2} = x^2 , so a = 2 a = 2 .

y ( 0 ) = c = 1 y(0) = c = 1 .

y ( 3 ) = 3 3 b + 1 = 9 3 + 1 1 = 7 y(-\sqrt{3}) = 3 -\sqrt{3}b + 1 = \frac{9 - 3 + 1}{1} = 7 , so b = 3 b = -\sqrt{3} .

c + d = 5 c+d = 5 .


I did it via evaluating y y , but thought I'd post an alternative solution.

Parveen Soni
Dec 4, 2014

note that x^4-x^2+1=(x^2+1+sqart(3).x)(x^2+1-sqart(3).x) so
y=(x^2-sqart(3).x+1) and y`=2x-sqrt(3). hence c=2 and d=3 and c+d=5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...