Differntiation...and a bit of series

Calculus Level 3

If f ( x ) = ( 1 x ) n f(x)=(1-x)^n , then find the value of the expression below:

f ( 0 ) + f ( 0 ) + f ( 0 ) 2 ! + f ( 0 ) 3 ! + + f ( n ) ( 0 ) n ! \large f(0)+f'(0)+\frac {f''(0)}{2!} + \frac {f'''(0)}{3!} + \cdots + \frac {f^{(n)}(0)}{n!}

Notation: f ( k ) f^{(k)} denotes the k k th derivative of f ( x ) f(x) .

0 None of the others 2 n 1 2^{n-1} 2 n 2^n

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

g ( x ) = f ( x ) + f ( x ) + f ( x ) 2 ! + f ( x ) 3 ! + + f ( n ) ( x ) n ! = ( 1 x ) n 0 ! + n ( 1 x ) n 1 1 ! + n ( n 1 ) ( 1 x ) n 2 2 ! + n ( n 1 ) ( n 2 ) ( 1 x ) n 3 3 ! + + ( 1 ) n n ( n 1 ) 3 2 1 ( 1 x ) 0 n ! = k = 0 n ( 1 ) k n ! k ! ( n k ) ! ( 1 x ) n k = k = 0 n ( 1 ) n ( n k ) ( 1 x ) n k = k = 0 n ( 1 ) n ( n k ) ( 1 x ) k = ( 1 ( 1 x ) ) n = x n \begin{aligned} g(x) & = f(x) + f'(x) + \frac {f''(x)}{2!} + \frac {f'''(x)}{3!} + \cdots + \frac {f^{(n)}(x)}{n!} \\ & = \frac {(1-x)^n}{0!} + \frac {-n(1-x)^{n-1}}{1!} + \frac {n(n-1)(1-x)^{n-2}}{2!} + \frac {-n(n-1)(n-2)(1-x)^{n-3}}{3!} + \cdots + \frac {(-1)^nn(n-1)\cdots 3 \cdot 2 \cdot 1(1-x)^0}{n!} \\ & = \sum_{k=0}^n \frac {(-1)^k n!}{k!(n-k)!} (1-x)^{n-k} = \sum_{k=0}^n (-1)^n {n \choose k} (1-x)^{n-k} = \sum_{k=0}^n (-1)^n {n \choose k} (1-x)^k \\ & = (1-(1-x))^n = x^n \end{aligned}

g ( 0 ) = 0 n = 0 \implies g(0) = 0^n = \boxed{0}

It should be k = 0 n ( 1 ) k ( n k ) ( 1 x ) n k = k = 0 n ( 1 ) n k ( n k ) ( 1 x ) k = ( 1 + 1 x ) n = ( x ) n \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} (1 - x)^{n - k} = \sum_{k=0}^{n} (-1)^{n - k} \binom{n}{k} (1 - x)^{k} = (-1 + 1 - x)^{n} = (-x)^{n} . Hence, g ( x ) = ( x ) n g(x) = (-x)^{n} . This does not affect the answer though.

Krutarth Patel - 4 months, 1 week ago
Aravind V
Oct 10, 2017

We can see that the expression that we want is 1-nC0+nC1-nC2+...(-1)^(n-1) x nCn which is the binomial expansion of (1-x)^n when x is 1. So since the expression and f(x) are equal at x=1, by putting x=1 in f(x) gives the answer as 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...