A calculus problem by Swapnil Roge

Calculus Level 3

What is the value of the integral 0 e x 2 8 d x \displaystyle \int _{ 0 }^{ \infty } e^{\large -\frac{x^{2}}{8}} dx ? Round-off your answer upto 3 decimal places.


The answer is 2.507.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Steven Chase
Jan 17, 2019

Here is one in terms of double integrals:

I = 0 e x 2 8 d x I 2 = 0 e x 2 8 d x 0 e y 2 8 d y = 0 π / 2 0 e r 2 8 r d r d θ = π 2 0 e r 2 8 r d r = π 2 0 e u r 4 r d u = 2 π 0 e u d u = 2 π I 2 = 2 π I = 2 π \large{I = \int_0^\infty e^{-\frac{x^2}{8}} dx \\ I^2 = \int_0^\infty e^{-\frac{x^2}{8}} dx \, \int_0^\infty e^{-\frac{y^2}{8}} dy \\ = \int_0^{\pi/2} \int_0^\infty e^{-\frac{r^2}{8}} \, r \, dr \, d\theta \\ = \frac{\pi}{2} \int_0^\infty e^{-\frac{r^2}{8}} \, r \, dr \\ = \frac{\pi}{2} \int_0^\infty e^{-u} \, r \, \frac{4}{r} \, du \\ = 2 \pi \int_0^\infty e^{-u} \, du = 2 \pi \\ I^2 = 2 \pi \implies \boxed{I = \sqrt{2 \pi}}}

Chew-Seong Cheong
Jan 18, 2019

I = 0 e x 2 8 d x Let t = x 2 8 d t = x 4 d x = 0 2 t 1 2 e t d t Gamma function Γ ( s ) = 0 t s 1 e t d t = 2 Γ ( 1 2 ) = 2 π 2.507 \begin{aligned} I & = \int_0^\infty e^{-\frac {x^2}8} dx & \small \color{#3D99F6} \text{Let }t=\frac {x^2}8 \implies dt = \frac x4 \ dx \\ & = \int_0^\infty \sqrt 2 t^{-\frac 12} e^{-t} dt & \small \color{#3D99F6} \text{Gamma function }\Gamma (s) = \int_0^\infty t^{s-1} e^{-t} dt \\ & = \sqrt 2 \Gamma \left(\frac 12\right) \\ & = \sqrt{2\pi} \\ & \approx \boxed{2.507} \end{aligned}

Swapnil Roge
Jan 17, 2019

L e t I = 0 e x 2 8 d x Let\quad I=\int _{ 0 }^{ \infty }{ { e }^{ -\frac { { x }^{ 2 } }{ 8 } } } dx

s u b s t i t u t e x 2 8 = t substitute\quad \frac { { x }^{ 2 } }{ 8 } =t

x = 8 t \therefore x=\sqrt { 8t }

a l s o , 2 x 8 d x = d t also,\quad 2\frac { x }{ 8 } dx=dt

d x = 4 8 t d t = 2 t 1 2 d t \therefore dx=\frac { 4 }{ \sqrt { 8t } } dt=\sqrt { 2 } { \quad t }^{ -\frac { 1 }{ 2 } }dt

I = 0 e t 2 t 1 2 d t \therefore I=\int _{ 0 }^{ \infty }{ { e }^{ -t } } \sqrt { 2 } { t }^{ -\frac { 1 }{ 2 } }dt

I = 2 0 e t t 1 2 d t \therefore I=\sqrt { 2 } \int _{ 0 }^{ \infty }{ { e }^{ -t } } { t }^{ -\frac { 1 }{ 2 } }dt

I = 2 0 e t t ( 1 2 1 ) d t \therefore I=\sqrt { 2 } \int _{ 0 }^{ \infty }{ { e }^{ -t } } { t }^{ \left( \frac { 1 }{ 2 } -1 \right) }dt

b u t 0 e t t ( 1 2 1 ) d t = Γ ( 1 2 ) = π but\int _{ 0 }^{ \infty }{ { e }^{ -t } } { t }^{ \left( \frac { 1 }{ 2 } -1 \right) }dt=\Gamma \left( \frac { 1 }{ 2 } \right) =\sqrt { \pi }

I = 2 π = 2 π = 2.507 \therefore I=\sqrt { 2 } \sqrt { \pi } =\sqrt { 2\pi } =\boxed{2.507}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...