What is the value of the integral ∫ 0 ∞ e − 8 x 2 d x ? Round-off your answer upto 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 0 ∞ e − 8 x 2 d x = ∫ 0 ∞ 2 t − 2 1 e − t d t = 2 Γ ( 2 1 ) = 2 π ≈ 2 . 5 0 7 Let t = 8 x 2 ⟹ d t = 4 x d x Gamma function Γ ( s ) = ∫ 0 ∞ t s − 1 e − t d t
L e t I = ∫ 0 ∞ e − 8 x 2 d x
s u b s t i t u t e 8 x 2 = t
∴ x = 8 t
a l s o , 2 8 x d x = d t
∴ d x = 8 t 4 d t = 2 t − 2 1 d t
∴ I = ∫ 0 ∞ e − t 2 t − 2 1 d t
∴ I = 2 ∫ 0 ∞ e − t t − 2 1 d t
∴ I = 2 ∫ 0 ∞ e − t t ( 2 1 − 1 ) d t
b u t ∫ 0 ∞ e − t t ( 2 1 − 1 ) d t = Γ ( 2 1 ) = π
∴ I = 2 π = 2 π = 2 . 5 0 7
Problem Loading...
Note Loading...
Set Loading...
Here is one in terms of double integrals:
I = ∫ 0 ∞ e − 8 x 2 d x I 2 = ∫ 0 ∞ e − 8 x 2 d x ∫ 0 ∞ e − 8 y 2 d y = ∫ 0 π / 2 ∫ 0 ∞ e − 8 r 2 r d r d θ = 2 π ∫ 0 ∞ e − 8 r 2 r d r = 2 π ∫ 0 ∞ e − u r r 4 d u = 2 π ∫ 0 ∞ e − u d u = 2 π I 2 = 2 π ⟹ I = 2 π